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Equation of matter waves can be written as 
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(a) Time dependent Schrödinger Equation: 

The equation (1) is  
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Differentiate Eq.(1) with respect to x, we get 
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is called momentum operator (for 3 dimension  


 i p̂ ). 

Again differentiate the Eq.(1) with respect to x, we get 
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Divide Eq.(2) by 2m 
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For free particle, Potential Energy V = 0, then Total energy (E) of the given particles 

becomes E = Kinetic energy = 
m 2

p2
x . Hence Eq.(5) becomes 
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Now differentiate Eq.(1) with respect to time ‘t’, we get 
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is called energy operator. 

From Eq.(5) and Eq.(8) we have, 
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which is time dependent Schrödinger equation for free particle in one dimension. 

Similarly equations for particle moving in Y and Z direction so,  
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Now add these three equations we get 











































  

m 2

p

m 2

p

m 2

p
 

zyxm 2

2
z

2
y

2
x

2

2

2

2

2

22
 

                                                           E
m 2

p
 

m 2

2
2

2
                                             (9) 

Using Eq.(8) and Eq.(9), we get 
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which is the time dependent Schrodinger equation for free particle in 3 dimension.  

Now, suppose particle is not free and some force acted upon it so,  
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This is the time dependent Schrodinger equation in 3 dimensions. 

(b) Time independent Schrödinger Equation: 

The equation (1) is 
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Substitute the value of equation (11) in the time dependent Schrodinger equation (10), we get 
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which is time independent Schrodinger equation. 

Physical Interpretation of Wave function )t,r(

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                 It is function of space and time only and may be positive or negative. 

                 )t,r(
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  can not related to any physical quantity except probability of finding 

particle in space at particular time. 

                 If )t,r(
  denote the complex conjugate then 
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


 represents 

the probability of finding particle in unit volume of space, surrounding the particle at any 

particular instant i.e. mathematically, 

finite)t,r(P
2
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, 1P0  , 1 denotes the certainty of presence and 0 denotes the 

certainty of absence. 

Well behaved wave function: 
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 must satisfy Schrodinger equation both time dependent and independent. 
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 is finite. 
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  must be single valued, if it not single valued probability density be multiple 

valued at the same point in space. 
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  and its space derivative must be continuous.  
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Normalised, Orthogonal and Orthonormal wave functions: 

Let 1 , 2 , 3 , 4 ,………….. m ,…… etc. be the Eigen function corresponding to discrete 

eigen values . Consider any two eigen functions m  and n  for any operator Ô  and  

mmmÔ   

nnnÔ   

where m  and n  are the eigen value of m  and n  for the operator Ô  respectively.  

If nm  then m  and n  are said to be degenerate wave functions otherwise it is called 

non-degenerate. 

If 0dnm 




  with condition that nm   then m  and n  are called orthogonal 

wave functions to each other. 

If 1dnm 




  with condition that nm   then m  and n  are called Normalised 

wave functions for m = n = 1, 2, … . 

If 

nmfor       0                    

n mfor        1                    

function  delta  kerKronecd mnnm






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

 

then m  and n  are called orthonormal wave functions. 

Note: If the eigen values are continuous, the eigenvakuek can be used as a parameter in the 

eigen functions: 

)k,x()x(k   

and the orthonormality condition can be written as 

functiondeltaDirac)kk(d)k,x()k,x(*       

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Complete set of eigen functions: 

Any normalized wave function , in accordance with the principle of superposition can be 

expressed as a linear combination of orthonormal eigen functions. 
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n
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where nc ’s are the complex numbers. i.e. every physical quantity can be expressed by an operator 

with eigen function 1 , 2 , 3 , 4 ,………….. m ,…… etc which forms a complete set of 

orthonormal wave functions w. r. t.  . 

Completeness relation: 

If 1 , 2 , 3 , 4 ,………….. m ,…… etc. be an complete set of eigen functions of some 

operator corresponding to a dynamical observable of some system, then an arbitrary sate 

can be expressed as  
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2
ic d which is completeness relation for the given et. It is the necessary as well as 

sufficient condition for a set of functions to be complete. 1c
i

2
i   is the probability that system 

described by   in the nth state. 

Normalised wave function: 

If wave function is normalized then, 
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If    is not normalised then, 
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N


 is normalized and 

N

1
is called Normalisation factor or constant. 

 

Example 1. Normalised the following wave function,  

2xNe)x(  . 

Solution: The wave function is 
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Example 2.  Normalised one dimensional wave function  
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                       where 0  

Solution:   If wave function is normalized then, 
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Hence normalized wave function is  
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Problems: Normalised the following wave functions: 
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Observables and Operators: 

Observable in Physics (called it A); such as energy, linear momentum, angular momentum or 

number of particle; there corresponds an operator (called it Â ) such that measurement of A 

yields values (called eigen value a). i.e. 

 aÂ  ; an eigen value equation 

where   is wave function or eigen function. 

Note: 

1. Some mathematical operators which are not connected to physics such as, 

(i) x4sin16x4sin
dx

d̂
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(ii) xcosxsin
dx
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2. The operator that corresponds to the observable linear momentum is, 

 i p̂  

                   For 1 dimension  

                             
x

i p̂x



   

                   Eigen value equation is  

                           

















xp

x

ˆ
i-   

                   The values xp̂  represents the possible values that measurement of x component 

of momentum yield. 

3. The operator that corresponds to the observable energy is Hamiltonian, i.e. 

                EĤ  

         where, V
m2

V
m2

p
Ĥ 2

22




 

4. The operator that corresponds to the total energy E in terms of the differential with 

respect to time is Hamiltonian, i.e. 

                            


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
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
E

t

ˆ
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Note: Every physical quantity in quantum mechanics, there is a corresponding linear 

operator. i.e.                                                                             Ô

 

Ô  is linear operator ,   is wave function and   is eigen value. 

Problem: 

1. Find the constant B which makes 
2axe an eigen function of the operator 














 2

2

2

Bx
dx

d
. What is the corresponding eigen value? 
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Operators: 

An operator is a symbol for a rule for transforming a given mathematical function into 

another 

 function, e.g.;                                                                                                                                                                                                                                         

)x(g)x(f Â 

                                              

nx)x(f

dx

d
 Â




 

Although operators do not have any physical meaning, they can be added, subtracted, 

multiplied and some other properties. 

Null operator:                                              0 Ô   

Inverse Operator:  If Â and  B̂ are two operators and                        

ÎÂ B̂B̂ Â    (identity operator) 

 then                                                  11 ÂB̂or   B̂ Â                                     

Linear Operator: 

                                               )x(Â)x(Â)x()x( Â 2121   

)x( Â c)x(  c Â   

  )x(Âc)x(Âc)x(c)x(c Â 22112211   

where c, 1c  and 2c  are arbitrary constants. 

Commutator Operator: 

Â B̂B̂ Â   is called commutator operator. It is denoted by ]B̂ ,Â[  and [   ] is commutation 

Bracket.  

If 0]B̂ ,Â[   then Â commutes with B̂ .They are called commuting operators and in this case

Â B̂B̂ Â  .   

If 0]B̂ ,Â[   then Â do not commutes with B̂ . They are called non commuting operators and 

in this case Â B̂B̂ Â  .   

The operators are canonically conjugate if there operators say Â and B̂ satisfy i]B̂ ,Â[   
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Heisenberg Uncertainty Principle is applicable to 0]B̂ ,Â[   i.e. canonically conjugate 

variables. 

Properties of Commutation bracket: 

1. ]Â,B̂ []B̂ ,Â[   

2. ]Ĉ ,Â[B̂Ĉ]B̂ ,Â[]ĈB̂ ,Â[   

3. 0]]B̂,Â[,Ĉ[]]Â,Ĉ[,B̂[]]Ĉ,B̂[ ,Â[   

4. ]B̂,Â[k]B̂k ,Â[  , where k is constant 

5. If Â and B̂ satisfy 0]B̂ ,Â[  then  

   (i) ]B̂,Â [B̂n]B̂ ,Â[ 1nn   

   (ii) ]B̂,Â [Ân]B̂ ,Â[ 1nn   

(iii) 

]B̂,Â[
2
1B̂Â

eee B̂Â


  

Examples: 

1. i]p̂ ,x̂[ x   

       Proof:  

 


















































































i              

x

)x(
i 

x
xi                

x
x

i 
x

i x              

x̂p̂p̂x̂]p̂ ,x̂[ xxx

 

            Hence i]p̂ ,x̂[ x   

Note: similarly i]p̂ ,ŷ[ y  and i]p̂ ,ẑ[ z   

Problems: 

1. x
2
x p̂i2]p̂ ,x̂[   

2. 1n
x

n
x p̂ni]p̂ ,x̂[    

3. i] x̂,p̂[ x   
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4. 1nn
x xni]x̂,p̂[    

5. 
x

f
i]p̂ ),x̂(f[



  ; 

p

f
i)]p̂f( ,x̂[



   where )x̂(f and )x̂(f are polynomial in x and p. 

Hermitian Operator: A linear operator is said to be Hermitian if it satisfies the following: 

     
dÂdÂ  

If  Â  Â  then Â  is called self adjoint or Hermitian. ( read ‘+’ sign as dagger) 

If  Â  Â  then Â  is called anti Hermitian.   

In general, 

     
dÂdÂ  

Properties of Hermitaian operators: 

1. Hermitian operators have real eigen values. 

Proof:                                                          Â  

****    Â   

                    If Â is Hermitian then 

     
dÂdÂ  

    d d **
 

  0d **    

                        0d *    

*
 

                         Hence eigen values are real 

2. The product of two commuting Hermitian operators Â  and B̂  is also Hermitian. 

       Proof:                                               
  ÂB̂  )B̂Â(  

                       Since operators Â  and B̂  is Hermitian therefore  

 Â  Â  
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 B̂  B̂  

                    also they are commuting so      Â B̂B̂ Â   

                    hence,                                     B̂ÂÂB̂ÂB̂  )B̂Â(  
 

                        therefore B̂ Â  is Hermtian. 

3. The eigen functions of Hermitian operator are orthogonal if they corresponds to 

distinct eigen values. 

Proof:                                                  111    Â   

                            222    Â      ( 21  ) 

                   If Â  is Hermitian then  

    


dÂdÂ 2121  

    


dd 221211  

                                                ) valuereal eigen , (          0d 1
*

12121  


 

                      since 21  , 

                  therefore,                                 0d21  


 

                  hence, eigen functions are orthogonal. 

4. If Â  and B̂ are two Hermitian operators then ]B̂,Â[
2

i
 is also hermitian. 

           Proof:  Since operators Â  and B̂  is Hermitian therefore  

 Â  Â  

 B̂  B̂  

 

   

]B̂,Â[
2

i
)ÂB̂B̂Â(

2

i

)B̂Â()ÂB̂(
2

i
)B̂Â()ÂB̂(

2

i

)ÂB̂()B̂Â(
2

i
)ÂB̂B̂Â(

2

i
]B̂,Â[

2

i

                     

                     

 



















 

               Thus  ]B̂,Â[
2

i
 is hermitian. 
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Problems: 

1. Show that momentum operator is Herrmitian. 

2. Show that every operator can be expressed as the combination of two operators, each 

of them is Hermitian operators. 

Parity operator: The symmetry property is called Parity. This can be treated as operator, 

called Parity operator P̂ . i.e. 

)x()x(P̂   

Properties of Parity Operator: 

1. Hamiltonian operator is symmetric. 

)x(H)x(H   

So the wave equation remains unchanged under this operation. 

)x(E)x()x(H   

)x(E)x()x(H   

)x(E)x()x(H   

)x(  and )x( are the solution of same wave equation with same eigen value. 

2. The eigen values of parity are 1 . 

  

)x()x(P̂   

)x()x(P̂)x(P̂)x(P̂P̂ 2                                                                       (1) 

By definition )x()x(P̂   

)x()x(P̂)x(P̂P̂                                                                                            (2) 

From equation (1) and (2)  

112   

3. The parity of a wave function does not change with time. 

  

All eigenfunction of symmetric H have even parity (+1) or odd parity (-1). 

 

)x(P̂)x(Ĥ                         

)x()x(Ĥ                        

)x()x(Ĥ)]x().x(Ĥ[P̂







 

i.e. 
0]P̂),x(Ĥ[

0)x()P̂)x(Ĥ)x(ĤP̂(




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in other word P̂ and Ĥ are commute therefore parity is conserved. 

4. If P̂ and Ĥ are commute then both have simultaneous eigenfunction. 

5. Non degenerate wave function must possess a definite parity. 

6. Degenerate wave function can be expressed as linear combination of even and 

odd parity.  

Note: If any operator Â  commutes with Hamiltonian, H then Â  is said to be constant of 

motion. 

Compatibility and Commutation: 

When the determination of an observable introduces an uncertainty in another observable, the 

two observables are said to be incompatible. The position and momentum of a particle are 

thus incompatible. The observables that can be simultaneously measured precisely without 

influency each other are termed as compatible. 

Let Â  and B̂ are two operators their observables are   and   respectively. If l and m are 

eigen values of Â  and B̂ respectively,   is corresponding eigen function, measurements of  

  and  certainly gives the value l and m respectively with the system in the state  . Thus  

  and   can  be measured simultaneously and are compatible. 

 lÂ  

 mB̂  

  l   mÂmmÂB̂Â  

 mB̂B̂ÂB̂  l l l  

     .0mmÂB̂B̂Â  ll  

  0]B̂,Â[0ÂB̂B̂Â   

Thus compatible observables are represented by commutating operators. 


