Chaudhary Mahadeo Prasad Degree College

(A CONSTITUENT PG COLLEGE OF UNIVERSITY OF ALLAHABD)

E-Learning Module

Subject: Physics

(Study material for Post Graduate students)

M. Sc. III Sem

Prepared by
Dr. Rakesh Kumar
DEPARTMENT OF PHYSICS

Density Operator Formalism

There are two types of state vectors for different system
(i) PURE STATE
(ii) MIXTURE STATE/STATISTICAL STATE

(i) PURE STATE

If the state of the system can be determined completely by state vector, then state is said to be pure state. The pure state $|\psi\rangle$ can be expanded in a set of eigen kets $\left.\left\{u_{n}\right\rangle\right\}$ of an arbitrary physical observable of the system.

$$
|\psi\rangle=\sum_{n}\left|u_{n}\right\rangle\left\langle u_{n} \mid \psi\right\rangle=\sum_{n} c_{n}\left|u_{n}\right\rangle,
$$

where $c_{n}=\left\langle u_{n} \mid \psi\right\rangle$

$$
\langle\psi \mid \psi\rangle=\sum_{\mathrm{n}}\left|\mathrm{c}_{\mathrm{n}}\right|^{2}=1
$$

Expectation value of any operator F :

$$
\begin{aligned}
\langle\mathrm{F}\rangle & =\langle\psi| \mathrm{F}|\psi\rangle \\
& =\langle\psi| \sum_{\mathrm{n}}\left|\mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{n}}\right| \mathrm{F} \sum\left|\mathrm{u}_{\mathrm{m}}\right\rangle\left\langle\mathrm{u}_{\mathrm{m}} \mid \psi\right\rangle \\
& =\sum_{\mathrm{n}, \mathrm{~m}}\left\langle\psi \mid \mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{n}}\right| \mathrm{F}\left|\mathrm{u}_{\mathrm{m}}\right\rangle\left\langle\mathrm{u}_{\mathrm{m}} \mid \psi\right\rangle \\
& =\sum_{\mathrm{n}, \mathrm{~m}} \mathrm{c}_{\mathrm{n}}^{*}\left\langle\mathrm{u}_{\mathrm{n}}\right| \mathrm{F}\left|\mathrm{u}_{\mathrm{m}}\right\rangle \mathrm{c}_{\mathrm{m}} \\
\langle\mathrm{~F}\rangle= & \sum_{\mathrm{n}, \mathrm{~m}} \mathrm{c}_{\mathrm{n}}^{*} \mathrm{c}_{\mathrm{m}} \mathrm{~F}_{\mathrm{n}, \mathrm{~m}}, \text { where } \mathrm{F}_{\mathrm{n}, \mathrm{~m}}=\left\langle\mathrm{u}_{\mathrm{n}}\right| \mathrm{F}\left|\mathrm{u}_{\mathrm{m}}\right\rangle
\end{aligned}
$$

(ii) STATISTICAL MIXTURE STATE

It is a generalization of the pure state, where the state of the system is not precisely specified. The existence of the state is defined in terms of probabilities.
e.g. A system in thermal equilibrium i.e. probability of finding states with energy $E_{n} \propto e^{-\frac{E}{k T}}$.

Probability of finding the system in the state $\left|\psi_{1}\right\rangle$ is P_{1}
Probability of finding the system in the state $\left|\psi_{2}\right\rangle$ is P_{2}

Probability of finding the system in the state $\left|\psi_{n}\right\rangle$ is P_{n}.
Thus, $\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots \ldots \ldots .+\mathrm{P}_{\mathrm{n}}=\sum_{\mathrm{n}} \mathrm{P}_{\mathrm{n}}=1$.
Hernce, we can say that the system is in the mixture state of $\left\langle\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle, \ldots . .\left|\psi_{n}\right\rangle$ with probabilities $-\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots \mathrm{P}_{\mathrm{n}}$.

Density Operator:

The density operator for the pure state is defined as,

$$
\begin{gathered}
\rho=|\psi\rangle\langle\psi| \\
|\psi\rangle=\sum_{\mathrm{n}}\left|\mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{n}} \mid \psi\right\rangle=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}\left|\mathrm{u}_{\mathrm{n}}\right\rangle \\
\rho=\sum_{\mathrm{n}, \mathrm{~m}} \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*}\left|\mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{m}}\right|
\end{gathered}
$$

then the matrix element of density operator ρ in the basis vectors $|u\rangle$ can be written as,

$$
\begin{aligned}
\rho_{\mathrm{kl}} & =\left\langle\mathrm{u}_{\mathrm{k}}\right| \rho\left|\mathrm{u}_{1}\right\rangle \\
& =\left\langle\mathrm{u}_{\mathrm{k}}\right| \sum_{\mathrm{n}, \mathrm{~m}} \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*}\left|\mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{m}} \mid \mathrm{u}_{1}\right\rangle \\
& =\sum_{\mathrm{n}, \mathrm{~m}}\left\langle\mathrm{u}_{\mathrm{k}} \mid \mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{m}} \mid \mathrm{u}_{1}\right\rangle \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*} \\
& =\sum_{\mathrm{n}, \mathrm{~m}} \delta_{\mathrm{kn}} \delta_{\mathrm{ml}} \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*} \\
\rho_{\mathrm{kl}} & =\mathrm{c}_{\mathrm{k}} \mathrm{c}_{1}^{*}
\end{aligned}
$$

We may obtain the expectation value of F by means of density operator ρ,

$$
\begin{aligned}
\langle\mathrm{F}\rangle & =\sum_{\mathrm{m}}\left\langle\mathrm{u}_{\mathrm{m}}\right| \rho \mathrm{F}\left|\mathrm{u}_{\mathrm{m}}\right\rangle=\sum_{\mathrm{n}, \mathrm{~m}}\left\langle\mathrm{u}_{\mathrm{m}}\right| \rho\left|\mathrm{u}_{\mathrm{n}}\right\rangle\left\langle\mathrm{u}_{\mathrm{n}}\right| \mathrm{F}\left|\mathrm{u}_{\mathrm{m}}\right\rangle \\
& =\sum_{\mathrm{n}, \mathrm{~m}} \rho_{\mathrm{mn}} \mathrm{~F}_{\mathrm{nm}}=\sum_{\mathrm{m}, \mathrm{n}}(\rho \mathrm{~F})_{\mathrm{mn}} \\
& =\operatorname{Tr}(\rho \mathrm{F})
\end{aligned}
$$

Normalization condition $\sum_{\mathrm{n}}\left|\mathrm{c}_{\mathrm{n}}\right|^{2}=1$ can be expressed in terms of density operator as,

$$
\begin{aligned}
& \sum_{\mathrm{n}} \rho_{\mathrm{nn}}=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}^{*}=\sum_{\mathrm{n}}\left|\mathrm{c}_{\mathrm{n}}\right|^{2}=1 . \\
& \operatorname{Tr}(\rho)=1
\end{aligned}
$$

Equation of motion for density operator ρ in the Schrödinger picture from its definition:
Schrödinger equation is,

$$
\begin{equation*}
i \hbar \frac{\partial\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle}{\partial \mathrm{t}}=\mathrm{H}_{\mathrm{s}}\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle \tag{1}
\end{equation*}
$$

Its complex conjugate,

$$
\begin{equation*}
-\mathrm{i} \hbar \frac{\partial\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right|}{\partial \mathrm{t}}=\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right| \mathrm{H}_{\mathrm{s}} \tag{2}
\end{equation*}
$$

Now

$$
\begin{align*}
\frac{\mathrm{d} \rho_{\mathrm{s}}}{\mathrm{dt}} & =\frac{\mathrm{d}}{\mathrm{dt}}\left(\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right|\right) \tag{3}\\
& =\frac{\mathrm{d}}{\mathrm{dt}}\left(\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle\right\rangle\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right|+\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle \frac{\mathrm{d}}{\mathrm{dt}}\left(\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right|\right)
\end{align*}
$$

Substitute the value of eq.(1) and eq.(2) in eq.(3), we get

$$
\begin{align*}
\frac{\mathrm{d} \rho_{\mathrm{s}}}{\mathrm{dt}} & =\left(\frac{1}{\mathrm{i} \hbar} \mathrm{H}_{\mathrm{s}}\left|\psi_{\mathrm{S}}(\mathrm{t})\right\rangle\right)\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right|+\left|\psi_{\mathrm{s}}(\mathrm{t})\right\rangle\left(-\frac{1}{\mathrm{i} \hbar}\left\langle\psi_{\mathrm{s}}(\mathrm{t})\right| \mathrm{H}_{\mathrm{s}}\right) \tag{4}\\
& =\frac{1}{\mathrm{i} \hbar}\left(\mathrm{H}_{\mathrm{s}} \rho_{\mathrm{s}}-\rho_{\mathrm{s}} \mathrm{H}_{\mathrm{s}}\right)=\frac{1}{\mathrm{i} \hbar}\left[\mathrm{H}_{\mathrm{s}}, \rho_{\mathrm{s}}\right]
\end{align*}
$$

where $\rho_{s}=\left|\psi_{s}(t)\right\rangle\left\langle\psi_{s}(t)\right|$
Similarly equation of motions for density operator ρ in Heisenberg and Interaction picture are

$$
\begin{gathered}
\frac{\mathrm{d} \rho_{\mathrm{H}}}{\mathrm{dt}}=\frac{1}{\mathrm{i} \hbar}\left[\mathrm{H}_{\mathrm{H}}, \rho_{\mathrm{H}}\right] ; \rho_{\mathrm{H}}=\left|\psi_{\mathrm{H}}(\mathrm{t})\right\rangle\left\langle\psi_{\mathrm{H}}(\mathrm{t})\right| \\
\frac{\mathrm{d} \rho_{\mathrm{I}}}{\mathrm{dt}}=\frac{1}{\mathrm{i} \hbar}\left[\mathrm{H}_{\mathrm{I}}, \rho_{\mathrm{I}}\right] ; \rho_{\mathrm{I}}=\left|\psi_{\mathrm{I}}(\mathrm{t})\right\rangle\left\langle\psi_{\mathrm{I}}(\mathrm{t})\right|
\end{gathered}
$$

For pure state:

Density operator is hermitian i.e. $\rho^{+}=\rho$

$$
\text { and also } \rho^{2}=\rho, \operatorname{Tr}\left(\rho^{2}\right)=1
$$

For impure state:

$$
\begin{aligned}
& \rho_{\mathrm{kl}}=\overline{\mathrm{c}_{\mathrm{k}} \mathrm{c}_{1}^{*}} \text { (average ensemble) } \\
& \operatorname{Tr}(\rho)=\sum_{\mathrm{k}} \rho_{\mathrm{kk}}=\sum_{\mathrm{k}} \mid \overline{\left.c_{\mathrm{k}}\right|^{2}}=1 \\
& \langle\mathrm{~F}\rangle=\sum_{\mathrm{n}, \mathrm{~m}} \overline{\mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*}} \mathrm{~F}_{\mathrm{n}, \mathrm{~m}} \\
& \langle\mathrm{~F}\rangle=\sum_{\mathrm{n}, \mathrm{~m}} \rho_{\mathrm{n}, \mathrm{~m}} \mathrm{~F}_{\mathrm{n}, \mathrm{~m}}=\operatorname{Tr}(\rho \mathrm{F})
\end{aligned}
$$

(i) If the system is in pure state

$$
\rho=|\psi\rangle\langle\psi|, \rho^{2}=|\psi\rangle\langle\psi \mid \psi\rangle\langle\psi|=|\psi\rangle\langle\psi|=\rho
$$

(ii) If the system is not in pure state, $\rho^{2} \neq \rho$

For a system described by a statistical mixture state, the density operator in the schrodinger picture can be defined by,

$$
\begin{array}{r}
\rho_{\mathrm{s}}=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}\left|\psi_{\mathrm{k}}^{\mathrm{s}}(\mathrm{t})\right\rangle\left\langle\psi_{\mathrm{k}}^{\mathrm{s}}(\mathrm{t} \mid\right. \\
\rho_{\mathrm{s}}=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \rho_{\mathrm{k}}^{\mathrm{s}} \text {, where } \rho_{\mathrm{k}}^{\mathrm{s}}=\left|\psi_{\mathrm{k}}^{\mathrm{s}}(\mathrm{t})\right\rangle\left\langle\psi_{\mathrm{k}}^{\mathrm{s}}(\mathrm{t} \mid\right.
\end{array}
$$

The density operators in Heisenberg picture and in the interaction picture are
$\rho_{\mathrm{H}}=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \rho_{\mathrm{k}}^{\mathrm{H}}$

$$
\rho_{\mathrm{I}}=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \rho_{\mathrm{k}}^{\mathrm{I}}
$$

$$
\text { So, }\langle\mathrm{A}\rangle=\operatorname{Tr}\left(\rho_{\mathrm{s}} \mathrm{~A}\right)=\operatorname{Tr}\left(\rho_{\mathrm{H}} \mathrm{~A}\right)=\operatorname{Tr}\left(\rho_{\mathrm{I}} \mathrm{~A}\right)
$$

Thus,

$$
\begin{aligned}
& \rho^{2}=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right| \sum_{\mathrm{k}^{\prime}} \mathrm{p}_{\mathrm{k}^{\prime}}\left|\psi_{\mathrm{k}^{\prime}}\right\rangle\left\langle\psi_{\mathrm{k}^{\prime}}\right| \\
& \\
& =\sum_{\mathrm{k}, \mathrm{k}^{\prime}} \mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}^{\prime}}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}} \mid \psi_{\mathrm{k}^{\prime}}\right\rangle\left\langle\psi_{\mathrm{k}^{\prime}}\right| \\
& \\
& =\sum_{\mathrm{k}, \mathrm{k}^{\prime}} \mathrm{p}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}^{\prime}}\left|\psi_{\mathrm{k}}\right\rangle \delta_{\mathrm{kk}^{\prime}}\left\langle\psi_{\mathrm{k}^{\prime}}\right| \\
& \\
& =\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}^{2}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right| \\
& \\
& \\
& \neq \rho \\
& \\
&
\end{aligned} \begin{aligned}
\operatorname{Tr}\left(\rho^{2}\right) & =\operatorname{Tr}\left(\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}^{2}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}} \mid\right\rangle\right. \\
& =\left\langle\psi_{\mathrm{k}}\right| \mathrm{p}_{\mathrm{k}}^{2}\left|\psi_{\mathrm{k}}\right\rangle \\
& =\mathrm{p}_{\mathrm{k}}^{2}\left\langle\psi_{\mathrm{k}} \mid \psi_{\mathrm{k}}\right\rangle \\
& =\mathrm{p}_{\mathrm{k}}^{2}
\end{aligned}
$$

Since $0<\mathrm{p}_{\mathrm{k}}<1$
$\operatorname{Tr}\left(\rho^{2}\right)=p_{k}^{2}$ hence $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$, equality holds for pure state.
Diagonal or P representation (Sudarshan-Glauber representation):
If sysrme is in a pure state $|\psi\rangle$ then density operator $\rho=|\psi\rangle\langle\psi|$,
Density operator for radiation as

$$
\rho=\int d^{2} z \phi(z)|z\rangle\langle z|,
$$

where $\phi(\mathrm{z})=$ Weight function can be thought similar to probability distribution function.
$\phi(\mathrm{z}) \mathrm{d}^{2} \mathrm{z}=$ interpreted as probability for classical amplitude to take value between z and $\mathrm{z}+$ dz.i.e. z_{r} to $\mathrm{z}_{\mathrm{r}}+\mathrm{d} \mathrm{z}_{\mathrm{r}}, \mathrm{z}_{\mathrm{i}}$ to $\mathrm{z}_{\mathrm{i}}+\mathrm{d} \mathrm{z}_{\mathrm{i}}$

$$
\mathrm{d}^{2} \mathrm{z}=\mathrm{dz}_{\mathrm{r}} \mathrm{~d} \mathrm{z}_{\mathrm{i}}
$$

$\langle F\rangle=\langle\psi| F|\psi\rangle$

$$
\text { i.e }\langle\mathrm{F}\rangle=\operatorname{Tr}(\rho \mathrm{F})
$$

$$
\begin{aligned}
\left\langle a^{+m_{a}} a^{n}\right\rangle & =\operatorname{Tr}\left(\rho a^{+m^{n}} a^{n}\right) \\
& =\sum_{k}\langle k| \rho a^{+m_{a}}|k\rangle \\
& =\sum_{k}\langle k| \int d^{2} z \phi(z)|z\rangle\langle z| a^{+m_{a}} a^{n}|k\rangle \\
& =\sum_{k} \int d^{2} z\langle k \mid z\rangle \phi(z)\langle z| a^{+m} a^{n}|k\rangle \\
& =\sum_{k} d^{2} z \phi(z)\langle z| a^{+m} a^{n}|k\rangle\langle k \mid z\rangle \\
& =\int d^{2} z \phi(z) z^{* m} z^{n}
\end{aligned}
$$

Glauber Sudarshan representation: $\rho=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)|\alpha\rangle\langle\alpha|$ for single mode radiation.
$\mathrm{P}(\alpha) \geq 0$, always positive definite; $\mathrm{P}(\alpha) \equiv$ Weight function; $\rho \equiv$ density operator
since ρ is hermitian, $\rho^{+}=\rho ;(P(\alpha))^{*}=P(\alpha) \Rightarrow P(\alpha)$ is real. $d^{2} \alpha P(\alpha)$ associate with probability distribution function. It has values lying between α and $\alpha+\mathrm{d}^{2} \alpha$. In diagonal Prepresentation, weight function $\mathrm{P}(\alpha)$ always has to be positive definite.

P-representation for coherent state:

Coherent state $\left|\alpha_{0}\right\rangle$; density operator: $\rho=\left|\alpha_{0}\right\rangle\left\langle\alpha_{0}\right|$
P- representation $\rho=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)|\alpha\rangle\langle\alpha|=\int \mathrm{d}^{2} \alpha \delta^{2}\left(\alpha-\alpha_{0}\right)|\alpha\rangle\langle\alpha|$, where
$P(\alpha)=\delta^{2}\left(\alpha-\alpha_{0}\right)$
$\delta^{2}\left(\alpha-\alpha_{0}\right)=\delta\left(\alpha_{r}-\alpha_{0 r}\right) \delta\left(\alpha_{i}-\alpha_{0 \mathrm{i}}\right)$

Normally Ordered and Antinormally Ordered Functions:

In normal ordering all ereation operators appears on the left and annihilation operators on the right, while in antinormal ordering all creation operators on the right and annihilation operators appears on the left.
e.g. $\mathrm{a}^{+} \mathrm{a}$ is normal ordering, aa^{+}is antinormal ordering.

Problem: Convert Normal Order function $a^{+2} a^{2}$ into antinormal function.
Solution: $\mathrm{a}^{+2} \mathrm{a}^{2}=\mathrm{a}^{+} \mathrm{a}^{+} \mathrm{aa}$
We know that $\left[\mathrm{a}, \mathrm{a}^{+}\right]=1$ so $\mathrm{a}^{+} \mathrm{a}=\mathrm{aa}^{+}-1$
Therefore

$$
\mathrm{a}^{+2} \mathrm{a}^{2}=\mathrm{a}^{+} \mathrm{a}^{+} \mathrm{aa}=\mathrm{a}^{+}\left(\mathrm{aa}^{+}-1\right) \mathrm{a}=\mathrm{a}^{+} \mathrm{aa}^{+} \mathrm{a}-\mathrm{a}^{+} \mathrm{a}
$$

$$
\begin{aligned}
\mathrm{a}^{+2} \mathrm{a}^{2} & =\left(\mathrm{aa}^{+}-1\right)\left(\mathrm{aa}^{+}-1\right)-\left(\mathrm{aa}^{+}-1\right) \\
& =\mathrm{aa}^{+} \mathrm{aa}^{+}-\mathrm{aa}^{+}-\mathrm{aa}^{+}+1-\mathrm{aa}^{+}+1 \\
& =\mathrm{a}\left(\mathrm{aa}^{+}-1\right) \mathrm{a}^{+}-3 \mathrm{a}^{+} \mathrm{a}+2 \\
& =\mathrm{aaa}^{+} \mathrm{a}^{+}-4 \mathrm{a}^{+} \mathrm{a}+2 \\
& =\mathrm{a}^{2} \mathrm{a}^{+2}-4 \mathrm{a}^{+} \mathrm{a}+2
\end{aligned}
$$

Normally Ordered Coherence function:

$$
\Gamma^{(\mathrm{n}, \mathrm{~m})}=\operatorname{Tr}\left(\rho \mathrm{a}^{+\mathrm{m}} \mathrm{a}^{\mathrm{n}}\right)
$$

which is coherence function of order n ,
$(\mathrm{n}, \mathrm{m})=\operatorname{Tr}\left(\mathrm{\rho a}^{+\mathrm{m}} \mathrm{a}^{\mathrm{n}}\right)$

$$
\begin{aligned}
& =\sum_{k}\langle k| \int d^{2} \alpha \mathrm{P}(\alpha)|\alpha\rangle\left\langle\alpha a^{+m^{n}} a^{n}\right)|\mathrm{k}\rangle \\
& =\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha) \sum_{k}\langle\mathrm{k} \mid \alpha\rangle\langle\alpha| a^{+\mathrm{m}_{\mathrm{a}} \mathrm{n}}|\mathrm{k}\rangle
\end{aligned}
$$

$$
=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)\langle\alpha| \mathrm{a}^{+\mathrm{m}_{\mathrm{a}}} \mathrm{n}|\alpha\rangle \sum_{\mathrm{k}}|\mathrm{k}\rangle\langle\mathrm{k}|
$$

$$
=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)\langle\alpha| \mathrm{a}^{+\mathrm{m}} \mathrm{a}^{\mathrm{n}}|\alpha\rangle
$$

$$
\Gamma^{(\mathrm{n}, \mathrm{~m})}=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha) \alpha^{* \mathrm{~m}} \alpha^{\mathrm{n}}
$$

Density Operator for Single mode radiation in thermal equilibrium at temperature, \mathbf{T} :

Consider a system exists in thermal equilibrium with reservoir at temperature T. From statistical mechanics, probability of finding system in state E_{n} is directly proportional to Boltzmann factor, i.e.
where
$E_{n} \propto e^{-E_{n} / k T}$

$\mathrm{Z}=\sum_{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}} / \mathrm{kT}}$ is called partition function

$$
\begin{equation*}
p_{n}=\frac{e^{-E_{n} / k T}}{\sum_{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}} / k T}} \tag{1}
\end{equation*}
$$

The sameresult of equation (1) can be expressed quantum mechanically by taking density operator ρ as

The probability for existence in the nth state is

$$
\begin{equation*}
\langle\mathrm{n}| \rho|\mathrm{n}\rangle=\frac{\mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}}}{\sum_{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}} / \mathrm{kT}}} \tag{3}
\end{equation*}
$$

Note: Show that equation (1) and equation(3) are same.

$$
\mathrm{H}|\mathrm{n}\rangle=\mathrm{E}_{\mathrm{n}}|\mathrm{n}\rangle
$$

$$
\mathrm{e}^{-\mathrm{H} / \mathrm{kT}}|\mathrm{n}\rangle=\mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}}|\mathrm{n}\rangle
$$

$$
\langle\mathrm{n}| \mathrm{e}^{-\mathrm{H} / \mathrm{kT}}|\mathrm{n}\rangle=\mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}}
$$

$$
\therefore \operatorname{Tr}\left(\mathrm{e}^{-\mathrm{H} / \mathrm{kT}}\right)=\sum_{\mathrm{n}}\langle\mathrm{n}| \mathrm{e}^{-\mathrm{H} / \mathrm{kT}}|\mathrm{n}\rangle=\sum_{\mathrm{n}} \mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}}
$$

Hence,

$$
\langle\mathrm{n}| \rho|\mathrm{n}\rangle=\frac{\mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}}}{\sum_{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}} / \mathrm{kT}}}
$$

$$
\mathrm{e}^{-\mathrm{H} / \mathrm{kT}}=\mathrm{e}^{-\mathrm{E}_{\mathrm{n}} / \mathrm{kT}} \sum_{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|
$$

Since $H=\left(N+\frac{1}{2}\right) \omega$

$$
\mathrm{e}^{-\mathrm{H} / \mathrm{kT}}=\mathrm{e}-\left(\mathrm{N}+\frac{1}{2}\right) \omega / \mathrm{kT} \sum_{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|
$$

$$
=\sum_{\mathrm{n}} \mathrm{e}^{-\left(\mathrm{n}+\frac{1}{2}\right) \omega / \mathrm{kT}}|\mathrm{n}\rangle\langle\mathrm{n}| \quad \text { since } N|n\rangle=n|\mathrm{n}\rangle
$$

$$
\operatorname{Tr}\left(\mathrm{e}^{-\mathrm{H} / \mathrm{kT}}\right)=\sum_{\mathrm{n}}\langle\mathrm{n}| \mathrm{e}^{-\mathrm{H} / \mathrm{kT}}|\mathrm{n}\rangle
$$

$$
=\sum_{\mathrm{n}} \mathrm{e}^{-\left(\mathrm{n}+\frac{1}{2}\right) \omega / \mathrm{kT}}
$$

$$
=\mathrm{e}^{-\omega / 2 \mathrm{kT}}\left[1+\mathrm{e}^{-\omega / k T}+\mathrm{e}^{-2 \omega / k T}+\mathrm{e}^{-3 \omega / k T}+\right.
$$

$$
\left.\rho=\sum_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \omega / \mathrm{kT}}\left(1-\mathrm{e}^{-\omega / \mathrm{kT}}\right) \operatorname{n}\right\rangle\langle\mathrm{n}|
$$

which is density operator for thermal radiation (chaotic light)
The average number of photons in this mode

$$
\begin{aligned}
& \overline{\mathrm{n}}=\operatorname{Te}[\mathrm{N} \rho]=(1-\mathrm{x}) \mathrm{x}\left(1+2 \mathrm{x}+3 \mathrm{x}^{2}+\ldots \ldots . .\right) \\
& \begin{aligned}
1 / 2 & =(1-x) \times \frac{d}{d x}(1+x+x \\
& =(1-x) \times \frac{d}{d x}\left(\frac{1}{1-x}\right)
\end{aligned} \\
& =(1-x) x \frac{1}{(1-x)^{2}} \\
& =\frac{\mathrm{x}}{(1-\mathrm{x})}=\frac{\mathrm{e}^{-\omega / \mathrm{kT}}}{\left(1-\mathrm{e}^{-\omega / \mathrm{kT}}\right)} \\
& \left.\begin{array}{rl}
\text { e }-\omega / k T & =\bar{n}\left(1-e^{-\omega / k T}\right) \\
& =\bar{n}-\bar{n} e^{-\omega / k T}
\end{array}\right) \\
& \mathrm{e}^{-\omega / \mathrm{kT}}=\frac{\overline{\mathrm{n}}}{(\overline{\mathrm{n}}+1)} \\
& 1-\mathrm{e}^{-\omega / \mathrm{KT}}=1-\frac{\overline{\mathrm{n}}}{(\overline{\mathrm{n}}+1)}=\frac{1}{(\overline{\mathrm{n}}+1)}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\rho & \left.=\sum_{\mathrm{n}} \mathrm{e}^{-\mathrm{n} \omega / \mathrm{kT}}\left(1-\mathrm{e}^{-\omega / \mathrm{kT}}\right) \mathrm{n}\right\rangle\langle\mathrm{n}| \\
& =\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}}{\overline{\mathrm{n}}+1}\right)^{\mathrm{n}}\left(\frac{1}{\overline{\mathrm{n}}+1}\right)|\mathrm{n}\rangle\langle\mathrm{n}| \\
& =\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)|\mathrm{n}\rangle\langle\mathrm{n}|
\end{aligned}
$$

which is density operator for single mode radiation at thermal equilibrium at temperature T .

$$
\operatorname{Tr}(\rho)=\langle\mathrm{n}| \rho|\mathrm{n}\rangle
$$

$$
\rho=\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)|\mathrm{n}\rangle\langle\mathrm{n}|
$$

$$
\therefore \operatorname{Tr}(\rho)=\langle\mathrm{n}| \sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)|\mathrm{n}\rangle
$$

$$
\left.=\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)\right)^{\bar{n}}
$$

$$
=\frac{1}{(\overline{\mathrm{n}}+1)} \sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}}{(\overline{\mathrm{n}}+1)}\right)^{\mathrm{n}}
$$

$$
=\frac{1}{(\overline{\mathrm{n}}+1)}\left(\frac{1}{1-\frac{\bar{n}}{(\bar{n}+1)}}\right)=1
$$

$\operatorname{Tr}(\rho)=1$

Mehta - Sudarshan Method:

P- representation or Glauber- Sudarshan representation is

$$
\rho=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)|\alpha\rangle\langle\alpha|
$$

Evaluate: $\langle-\beta| \rho|\beta\rangle=\langle-\beta| \int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)|\alpha\rangle\langle\alpha \mid \beta\rangle=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha)\langle-\beta \mid \alpha\rangle\langle\alpha \mid \beta\rangle$

Where, $\langle-\beta \mid \alpha\rangle=\exp \left[-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}-\beta^{*} \alpha\right)\right]$

$$
\begin{aligned}
\langle\alpha \mid \beta\rangle= & \exp \left[-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}+\alpha^{*} \beta\right)\right] \\
& \langle-\beta| \rho|\beta\rangle=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha) \exp \left[-\left(|\alpha|^{2}+|\beta|^{2}-\beta^{*} \alpha+\alpha^{*} \beta\right)\right] \\
& \langle-\beta| \rho \mid \beta) \mathrm{e}^{|\beta|^{2}}=\int \mathrm{d}^{2} \alpha \mathrm{P}(\alpha) \exp \left[-\left(|\alpha|^{2}-\beta^{*} \alpha+\alpha^{*} \beta\right)\right]
\end{aligned}
$$

Therefore

$$
\mathrm{P}(\alpha) \mathrm{e}^{-|\alpha|^{2}}=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} \beta\langle-\beta| \rho|\beta\rangle \exp \left[\left(-\alpha^{*} \beta+\beta^{*} \alpha\right)\right] \mathrm{e}^{|\beta|^{2}}
$$

Use Fourier transform,
$g(\beta)=\int d^{2} \alpha f(\alpha) \exp \left[\left(\alpha^{*} \beta-\beta^{*} \alpha\right)\right\rfloor$
$f(\alpha)=\frac{1}{\pi^{2}} \int d^{2} \beta g(\beta) \exp \left[-\left(\alpha^{*} \beta-\beta^{*} \alpha\right)\right]$
$P(\alpha)$ for thermal radiation:

$$
\rho=\sum_{\mathrm{n}}\left(\frac{\left.\frac{\mathrm{n}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)|\mathrm{n}\rangle\langle\mathrm{n}| .|.|}{}\right.
$$

$$
\left.\langle-\beta| \rho|\beta\rangle=\sum_{n}\left(\frac{\bar{n}^{n}}{(\bar{n}+1)^{n+1}}\right)\langle-\beta \mid n\rangle\langle n\rangle \beta\right\rangle
$$

$$
|\beta\rangle=\mathrm{e}^{-\frac{1}{2}|\beta|^{2}} \sum_{\mathrm{m}} \frac{\beta^{\mathrm{m}}}{\sqrt{\mathrm{~m}!}}|\mathrm{n}\rangle
$$

$$
\begin{aligned}
\langle-\beta| \rho|\beta\rangle & =\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right)\langle-\beta \mid \mathrm{n}\rangle\langle\mathrm{n} \mid \beta\rangle \\
& =\sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}^{\mathrm{n}}}{(\overline{\mathrm{n}}+1)^{\mathrm{n}+1}}\right) \mathrm{e}^{-\frac{1}{2}|\beta|^{2}} \sum_{\mathrm{n}} \frac{\beta^{\mathrm{n}}}{\sqrt{\mathrm{n}!}} \mathrm{e}^{-\frac{1}{2}|\beta|^{2}} \sum_{\mathrm{n}} \frac{-\beta^{* n}}{\sqrt{\mathrm{n}!}} \\
& =\frac{\mathrm{e}^{-|\beta|^{2}}}{(\overline{\mathrm{n}}+1)} \sum_{\mathrm{n}}\left(\frac{\overline{\mathrm{n}}}{\overline{\mathrm{n}}+1}\right)^{\mathrm{n}} \sum_{\mathrm{n}} \frac{-|\beta|^{2 \mathrm{n}}}{\mathrm{n}!} \\
& =\mathrm{e}^{-|\beta|^{2}(\overline{\mathrm{n}}+1)^{-1} \exp \left(-\frac{\overline{\mathrm{n}}|\beta|^{2}}{\overline{\mathrm{n}}+1}\right)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P(\alpha)=\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} \beta\langle-\beta| \rho|\beta\rangle \exp \left[\left(\alpha \beta^{*}-\beta \alpha^{*}\right)\right] \mathrm{e}^{|\alpha|^{2}+|\beta|^{2}} \\
&=\left.\frac{1}{\pi^{2}} \mathrm{e}^{-|\beta|^{2}}(\overline{\mathrm{n}}+1)^{-1} \int \mathrm{~d}^{2} \beta \exp \left(-\frac{\overline{\mathrm{n}}|\beta|^{2}}{\overline{\mathrm{n}}+1}\right) \exp \left[\left(\alpha \beta^{*}-\beta \alpha^{*}\right)\right] \mathrm{e}^{2}\right|^{2}+|\beta|^{2} \\
&=\frac{1}{\pi^{2}} \mathrm{e}^{|\alpha|^{2}}(\overline{\mathrm{n}}+1)^{-1} \int \mathrm{~d}^{2} \beta \exp \left(-\frac{\overline{\mathrm{n}}|\beta|^{2}}{\overline{\mathrm{n}}+1}+\alpha \beta^{*}-\beta \alpha^{*}\right) \\
& \int \mathrm{d}^{2} \beta \exp \left(-\mathrm{A}|\beta|^{2}+\mathrm{B} \beta+\mathrm{C} \beta^{*}\right)=\frac{\pi}{\mathrm{A}} \exp \left(\frac{\mathrm{BC}}{\mathrm{~A}}\right) ;
\end{aligned}
$$

Where $\mathrm{A}=\frac{\overline{\mathrm{n}}}{\overline{\mathrm{n}}+1}, \mathrm{~B}=-\alpha^{*}, \mathrm{C}=\alpha$,

Evaluation of Integration

$$
I=\int d^{2} \beta \exp \left(-A|\beta|^{2}+B \beta+C \beta^{*}\right)=\int d^{2} \beta \exp \left(-A|\beta|^{2}\right) \sum_{m, n} \frac{B^{n} \beta^{n} C^{m} \beta^{* m}}{m!n!}
$$

Write $\beta=X^{i \theta} ; d^{2} \beta=X d X d \theta$

$$
\mathrm{I}=\int_{0}^{\infty} \mathrm{dXX} \mathrm{Xe}^{-\mathrm{AX}} \mathrm{X}^{2} \int_{0}^{2 \pi} \mathrm{~d} \theta \sum_{\mathrm{m}, \mathrm{n}} \frac{\mathrm{~B}^{\mathrm{n}} \mathrm{C}^{\mathrm{m}} \mathrm{X}^{\mathrm{n}+\mathrm{m}} \mathrm{e}^{\mathrm{i}(\mathrm{n}-\mathrm{m}) \theta}}{\mathrm{m}!\mathrm{n}!}
$$

Integration on θ gives zero if $\mathrm{n} \neq \mathrm{m}$,

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \theta e^{i(n-m) \theta}=2 \pi \delta_{n m} \\
I= & 2 \pi \delta_{n m} \int_{0}^{\infty} d X X e^{-A X^{2}} \sum_{m, n} \frac{B^{n} C^{m} X^{n+m}}{m!n!} . . \\
= & 2 \pi \sum_{n} \frac{B^{n} C^{n}}{(n!)^{2}} \int_{0}^{\infty} d X X^{2 n+1} e^{-A X^{2}}
\end{aligned}
$$

If $u=X^{2} ; \mathrm{du}=2 \mathrm{XdX} ; \frac{\mathrm{d}}{2}=\mathrm{XdX}$,

$$
\int_{0}^{\infty} d X X^{2 n+1} e^{-A X^{2}}=\frac{n!}{A^{n+1}}
$$

$$
\mathrm{I}=\pi \sum_{\mathrm{n}} \frac{(\mathrm{BC})^{\mathrm{n}}}{(\mathrm{n}!)^{2}} \frac{\mathrm{n}!}{\mathrm{A}^{\mathrm{n}+1}}=\frac{\pi}{\mathrm{A}} \exp \left(\frac{\mathrm{BC}}{\mathrm{~A}}\right)
$$

hence,

$$
\mathrm{P}(\alpha)=\frac{1}{\pi^{2}(\overline{\mathrm{n}}+1)} \mathrm{e}^{|\alpha|^{2}} \frac{\pi}{\bar{n}}(\overline{\mathrm{n}}+1) \exp \left(-\frac{(\overline{\mathrm{n}}+1)|\alpha|^{2}}{\overline{\mathrm{n}}}\right)
$$

$$
=\frac{1}{\pi \bar{n}} \exp \left(-|\alpha|^{2}\left(\frac{\overline{\mathrm{n}}+1}{\overline{\mathrm{n}}}-1\right)\right)
$$

$$
=\frac{1}{\pi \bar{n}} \exp \left(-\frac{|\alpha|^{2}}{\bar{n}}\right)
$$

which is Gaussian distribution. where, average number of photons $\overline{\mathrm{n}}=\frac{\mathrm{e}^{-\omega / \mathrm{KT}}}{\left(1-\mathrm{e}^{-\omega / \mathrm{KT}}\right)}$

Q- Representation:

For evaluating the antinormally ordered coherence function,

$$
\Gamma_{\mathrm{A}}^{(\mathrm{n}, \mathrm{~m})}=\operatorname{Tr}\left[\rho \mathrm{a}^{\mathrm{n}} \mathrm{a}^{+\mathrm{m}}\right]
$$

$$
\begin{aligned}
\operatorname{Tr}\left[\rho \mathrm{a}^{\mathrm{n}} \mathrm{a}^{+\mathrm{m}}\right] & =\sum_{\mathrm{n}}\langle\mathrm{n}| \rho \mathrm{a}^{\mathrm{n}} \mathrm{a}^{+\mathrm{m}}|\mathrm{n}\rangle \\
& =\sum_{\mathrm{n}}\langle\mathrm{n}| \rho \mathrm{a}^{\mathrm{n}} \frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\left\langle\alpha \mathrm{a}^{+\mathrm{m}} \mid \mathrm{n}\right\rangle \\
& =\pi^{-1} \int \mathrm{~d}^{2} \alpha\langle\alpha| \rho|\alpha\rangle \alpha^{* \mathrm{~m}} \alpha^{\mathrm{n}}
\end{aligned}
$$

Thus moments of $\langle\alpha| \rho|\alpha\rangle$ give the antinormally ordered coherence functions.

$$
\begin{aligned}
& \mathrm{Q}(\alpha)=\frac{1}{\pi}\langle\alpha| \rho|\alpha\rangle \\
& \rho= \sum_{\psi} \mathrm{P}_{\psi}|\psi\rangle\langle\psi| ; \mathrm{P}_{\psi} \geq 0 \\
& \mathrm{Q}(\alpha)= \frac{1}{\pi}\langle\alpha| \sum_{\psi} \mathrm{P}_{\psi}|\psi\rangle\langle\psi \mid \alpha\rangle \\
&= \sum_{\psi} \frac{1}{\pi} \mathrm{P}_{\psi}\langle\alpha \mid \psi\rangle\langle\psi \mid \alpha\rangle \\
&= \sum_{\psi} \frac{1}{\pi} \mathrm{P}_{\psi}|\langle\psi \mid \alpha\rangle|^{2} \\
& \therefore \mathrm{Q}(\alpha) \geq 0 \\
& \begin{aligned}
& \int \mathrm{d}^{2} \alpha \mathrm{Q}(\alpha)= \\
& \frac{1}{\pi} \int \mathrm{~d}^{2} \alpha\langle\alpha| \rho|\alpha\rangle \\
& \hline=\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha\langle\alpha| \sum|\mathrm{n}\rangle\langle\mathrm{n}| \rho|\alpha\rangle \\
&= \sum_{\mathrm{n}}\langle\mathrm{n}| \rho \frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha \mid \mathrm{n}\rangle \\
&= \sum_{\mathrm{n}}\langle\mathrm{n}| \rho|\mathrm{n}\rangle=\operatorname{Tr}(\rho)=1
\end{aligned}
\end{aligned}
$$

R- Representation:

Completeness relation for coherent state is

$$
\begin{gathered}
\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha|=1 \\
\rho=\pi^{-1} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha| \rho \pi^{-1} \int \mathrm{~d}^{2} \beta|\beta\rangle\langle\beta| \\
=\pi^{-2} \int \mathrm{~d}^{2} \alpha \mathrm{~d}^{2} \beta\langle\alpha| \rho|\beta\rangle|\alpha\rangle\langle\beta|
\end{gathered}
$$

$$
\rho=\pi^{-2} \int \mathrm{~d}^{2} \alpha \mathrm{~d}^{2} \beta \mathrm{e}^{-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}\right)} \mathrm{R}\left(\alpha^{*}, \beta\right)|\alpha\rangle\langle\beta|
$$

which is R -representation
where,

$$
\mathrm{R}\left(\alpha^{*}, \beta\right)=\sum_{\mathrm{n}, \mathrm{~m}} \frac{\alpha^{* \mathrm{n}} \beta^{\mathrm{m}}}{\sqrt{\mathrm{n}!} \sqrt{\mathrm{m}!}}\langle\mathrm{n}| \rho|\mathrm{m}\rangle
$$

Characteristic functions:

Characteristics function is defined as

$$
\chi(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]
$$

Normally ordered characteristic function is defined as,

$$
\chi_{\mathrm{N}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}} \mathrm{e}^{-\xi^{*} \mathrm{a}}\right]
$$

Normally Ordered coherence function is defined as

$$
\sqrt{\pi} \Gamma_{\mathrm{N}}^{(\mathrm{n}, \mathrm{~m})}=\operatorname{Tr}\left[\rho \mathrm{a}^{+\mathrm{n}} \mathrm{a}_{\mathrm{m}}\right]
$$

Relation between Characteristic function and Coherence function:

$$
\begin{aligned}
& \frac{\partial}{\partial \xi}\left(\mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right)=\mathrm{a}^{+} \mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}} \\
& \frac{\partial}{\partial \xi^{*}}\left(\mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right)=\mathrm{e}^{\xi \mathrm{a}^{+}}\left(-a \mathrm{e}^{-\xi^{*} \mathrm{a}}\right)
\end{aligned}
$$

$$
\left.\left(\frac{\partial}{\partial \xi}\right)^{n}\left(-\frac{\partial}{\partial \xi^{*}}\right)^{m}\left[e^{\xi a^{+}-\xi^{*}} \mathrm{a}\right]\right|_{\xi=0}=\left.a^{+n} e^{\xi a^{+}} a^{m} e^{-\xi^{*}}\right|_{\xi=0}=a^{+n} a^{m}
$$

$$
\Gamma_{\mathrm{N}}^{(\mathrm{n}, \mathrm{~m})}=\operatorname{Tr}\left[\rho \mathrm{a}^{+\mathrm{n}} \mathrm{a}^{\mathrm{m}}\right]
$$

$$
=\operatorname{Tr}\left[\left.\rho\left(\frac{\partial}{\partial \xi}\right)^{\mathrm{n}}\left(-\frac{\partial}{\partial \xi^{*}}\right)^{\mathrm{m}}\left[\mathrm{e}^{\xi^{+}-\xi^{*} \mathrm{a}}\right]\right|_{\xi=0}\right]
$$

$$
=\left(\frac{\partial}{\partial \xi}\right)^{\mathrm{n}}\left(-\frac{\partial}{\partial \xi^{*}}\right)^{\mathrm{m}} \operatorname{Tr}\left[\left.\rho\left[\mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]\right|_{\xi=0}\right]
$$

$$
=(-1)^{\mathrm{m}}\left(\frac{\partial}{\partial \xi}\right)^{\mathrm{n}}\left(\frac{\partial}{\partial \xi^{*}}\right)^{\mathrm{m}} \chi_{\mathrm{N}}(\xi)_{\xi=0}(\hat{1}
$$

$$
\Gamma_{\mathrm{N}}^{(\mathrm{n}, \mathrm{~m})}=(-1)^{\mathrm{m}}\left(\frac{\partial^{\mathrm{n}+\mathrm{m}}}{\partial \xi^{\mathrm{n}} \partial \xi^{* \mathrm{~m}}}\right) \chi_{\mathrm{N}}(\xi)_{\xi=0}
$$

Properties:

1. $\chi_{\mathrm{N}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]$

$$
\chi_{\mathrm{N}}(0)=\operatorname{Tr}[\rho]=1
$$

2. $\chi_{\mathrm{N}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]$

$$
\left(\chi_{\mathrm{N}}(\xi)\right)^{*}=\left(\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]\right)^{*}
$$

$$
=\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]^{*}
$$

$$
=\operatorname{Tr}\left[e^{-\xi a^{+}} e^{\xi^{*}}{ }_{\rho}\right]
$$

since ρ is hermitian

since ρ is hermitian
$=\chi_{\mathrm{N}}(-\xi)$

Antinormally Ordered Characteristic function:

Antinormally ordered characteristic function is defined as,

$$
\chi_{\mathrm{A}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{-\xi^{*}} \mathrm{a} \mathrm{e}^{\xi \mathrm{a}^{+}}\right]
$$

Antinormally Ordered coherence function is defined as

$$
\Gamma_{\mathrm{A}}^{(\mathrm{n}, \mathrm{~m})}=\operatorname{Tr}\left[\rho \mathrm{a}^{\mathrm{n}} \mathrm{a}^{+\mathrm{m}}\right]
$$

Hence

$$
\begin{aligned}
\Gamma_{\mathrm{A}}^{(\mathrm{n}, \mathrm{~m})}= & \left.(-1)^{\mathrm{m}}\left(\frac{\partial^{\mathrm{n}+\mathrm{m}}}{\partial \xi^{\mathrm{n}} \partial \xi^{* \mathrm{~m}}}\right) \chi_{\mathrm{A}}(\xi)\right|_{\xi=0} \\
& \chi_{\mathrm{A}}(0)=\operatorname{Tr}[\rho]=1 \\
& \left(\chi_{\mathrm{A}}(\xi)\right)^{*}=\chi_{\mathrm{A}}(-\xi)
\end{aligned}
$$

Interrelationship between characteristics function:

BCH identity is

$$
\mathrm{e}^{\mathrm{A}+\mathrm{B}}=\mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}} \mathrm{e}^{-\frac{1}{2}[\mathrm{~A}, \mathrm{~B}]} \text { or }
$$

$$
e^{A} e^{B}=e^{A+B+\frac{1}{2}[A, B]}
$$

$$
\begin{gathered}
e^{A+B}=e^{B} e^{A} e^{\frac{1}{2}[A, B]} \\
A=\xi a^{+}, B=-\xi^{*} a
\end{gathered}
$$

$$
\begin{array}{r}
\left.3 \mathrm{H}|\overrightarrow{7}| \mathrm{A}, \mathrm{~B}=\left[\xi \mathrm{a}^{+} \mathrm{\xi}^{*} \mathrm{a}\right]=|\xi|^{2}\right] \\
\left.\mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]=\mathrm{e}^{-\frac{1}{2}|\xi|^{2} \mathrm{e}^{\xi \mathrm{a}^{+}} \mathrm{e}^{-\xi^{*} \mathrm{a}}}
\end{array}
$$

$$
\text { Also } \left.\mathrm{e}^{\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}}\right]=\mathrm{e}^{\frac{1}{2}|\xi|^{2}} \mathrm{e}^{-\xi^{*} \mathrm{a}} \mathrm{e}^{\xi \mathrm{a}^{+}}
$$

Characteristics function:

$$
\chi_{\mathrm{S}}(\xi)=\chi(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\left.\xi \mathrm{a}^{+}-\xi^{*} \mathrm{a}\right]}\right.
$$

Normally Ordered Characteristics function:

$$
x_{\mathrm{N}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{\xi \mathrm{a}^{+}} \mathrm{e}^{-\xi^{*} \mathrm{a}}\right]
$$

Antinormally Ordered Characteristics function: $\quad \chi_{\mathrm{A}}(\xi)=\operatorname{Tr}\left[\rho \mathrm{e}^{-\xi^{*}} \mathrm{a} \mathrm{e}^{\xi \mathrm{a}^{+}}\right]$ therefore,

$$
\begin{aligned}
& \chi_{S}(\xi)=e^{-\frac{1}{2}|\xi|^{2}} \chi_{\mathrm{N}}(\xi) \\
& \chi_{\mathrm{S}}(\xi)=\mathrm{e}^{\frac{1}{2}|\xi|^{2}} \chi_{\mathrm{A}}(\xi)
\end{aligned}
$$

Problems:

1. Find the value of $\chi_{N}(\xi)$ and $\chi_{A}(\xi)$ for $\chi(\xi)=e^{-C|\xi|^{2}}$, where C is constant.
2. Evaluate $\Gamma_{N}^{(n, n)}=\operatorname{Tr}\left[\rho a^{+n} a^{n}\right]$ and $\Gamma_{A}^{(n, n)}=\operatorname{Tr}\left[\rho a^{n} a^{+n}\right]$.
3. Show that $\chi_{\mathrm{N}}(\xi)$ and $\mathrm{P}(\alpha)$ are Fourier transform to each other.
4. Show that $\chi_{A}(\xi)$ is Fourier transform of $\langle\alpha| \rho|\alpha\rangle$.

