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Introduction of annihilation, creation operator and Occupation number 

states  

I Quantum condition for system of particle: 

  0q ,q nm  ;   0p ,p nm  ; 

                                                             mnnm ip ,q                                                              (1) 

II Quantum condition for system field:                  

  0)t,r( ),t,r( 


;   0)t,r( ),t,r( †† 


 

                                          )rr()t,r( ),t,r( 3† 


                                                         (2) 

Non Relativistic Schrödinger wave equation 

Hamiltonian Formalism 

                                          
]V[rdH

m2

13 


                                                   (3) 

Here,   is wave function 

                                              
]V[rdH ††

m2

13 


                                               (4) 

Here,   is field operator and † is Hermitian conjugate of  . 

Non Relativistic Schrodinger equation is 

                                                        ]H,[i                                                                         (5) 

 Vi 2

m2
1  

Expansion of  , †  in terms of eigen function ku  and other complex 

conjugates:- 

Consider ku (k =1, 2, 3, ………)              complete family of orthonormal eigen function of 

system of particles or field. 

Orthonormality condition:         kllk
3 uu rd 


 

Completeness relation:           )rr()r(u)r(u 3

k
kk   

                                                      (6)  

 

Expansion of  : 
k

)r(kk u)t(a)t,r( 
                                                                                 (7) 

Where ku  is c-number and )t(ak  is q-number. 

Eq.(7) can be solved to obtained )t(ak  
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    )r(u u)t(a rd)r(u t),r( rd k
l

)r(ll
3

k
3                                                                             (8) 

)t(a)t(a)r(u t),r( rd k
l

kllk
3     

                                                                                   (9) 

Hermitian Conjugate of Eq.(9) is 

   )r(u t),r( rd)t(a
k

†3
k

† 
                                                                                                (10) 

kk

kk
33

3
kk

33

†
kk

33
kk

                      

)r(u)r(urd rd                      

)rr( )r(u)r(urd rd                      

t)],r(t),,r([)r(u)r(urd rd)]t(a),t(a[
†









 

 

 







                                                     (11) 

Hence, 

 0)]t(a),t(a[
kk

  

0)]t(a),t(a[
†

k
†
k

                                                                                                                              (12) 

kkkk
)]t(a),t(a[

†

   

Number Operator: 


k

)r(kk u)t(a)t,r( 


 and   

k
)r(kk u)t(a)t,r(

††



 

From Eq.(4) 

]V[rdH ††

m2
13 


 

If ku ’s are the eigen function with eigen values kE  then 


k

k
†
kk aaEH  

H is the operator for number of particle in mode k, 

 

 

Where kN = k
†
k
aa  and the number operator N = 

k
kN  

For single mode, 1]a  ,a[
†

  and N = aa†
 

Occupation number state: 

If n  is the eigen state of number operator then, 


k

kkNEH  
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nnnN  ;  

Orthonormality condition: nmmn  ; 

Completeness relation:  
n

1nn . 

These states are known as occupation number states. 

Commutation relation for a, N and interpretation of a: 

aa]a  ,a[]aa  ,a[]N  ,a[ ††   

aNaaN   

)1N(aNa   

In general )1N(f aa)N(f   

Interpretation of a: If  n  is the occupation number state with n particles then 

nnnN   

 

   na 1-n            

n)1n(a            

n)1N(anaN







 

‘a’ decreases the occupation number by 1. So, it is called annihilation operator. 

 Commutation relation for a, N and interpretation of a † : 

†††††† a ]a  ,a[a]aa  ,a[]N  ,a[   

††† a NaNa   

)1N(aNa ††   

In general )1N(f aa)N(f ††   

Interpretation of a: If  n  is the occupation number state with n particles 

nnnN   

 

   na 1n            

n)1n(a            

n)1N(anaN

†

†

††







 

‘a † ’ increases the occupation number by 1. So, it is called creation operator. 

Action of n  on a and †a : 

Since ‘a’ is annihilation operator so we can write 
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1nna 
                                                                                                                        (13) 

Hermitian conjugate of Eq.(13) is 

 1nan
†

                                                                                                                   (14) 

Scalar Product of  (13) and (14) is
 

1n1nnaan
†

 
; N = aa†

 

1n1nnNn
2

 ; nnnN   

1n1nnnn
2

  

2
n  ; 11n1nnn   

n  

Hence  

 

Similary if  ‘ †a ’ is creation operator then we can write 

1nna† 
                                                                                                                      (15) 

Hermitian conjugate of Eq.(15) is 

 1nan
                                                                                                                       (16) 

Scalar Product of  Eq.(15) and Eq.(16) is
 

1n1nnaan
†

 
; N  + 1= 

†aa  

1n1nn1Nn
2

 ; nnnN   

1n1nnn)1n(
2

  

2
1n  ; 11n1nnn   

1n   

Hence 

 

Generalization to multimode: 

 
0]a,a[

kk
  

0]a,a[
†

k
†
k

                                                                                                  

1nnna 
 

1n1nna
†
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kkkk
]a,a[

†

 

. 

  ,.........n...,..........n,n,n,nn k4321k 

 
  ,.........n...,..........n,n,n,nnnN k4321kkk 

  ,.........1n...,..........n,n,n,nnna k4321kkk 

  ,.........1n...,..........n,n,n,n1nna k4321kkk

†


 

 

COHERENT STATE (   ): 

It is an eigenstate of annihilation operator ‘a’. 

                                                        
a

                                                                    (17) 

  be complex number  

                                                


i
ir ei

                                                           (18) 

Relation between   and  n :  

We know that nc
0n

n




,  

using equation (17) 

ncnca
0n

n
0n

n 







; 

ncnac
0n

n
0n

n  







  

1nnna    

nc1nnc
0n

n
1n

n 







 

.......2c  1c  0c  ..............2c 31c  20c 1 210321 
 

Comparing the coefficients of the occupation number states on both sides,  

1

c 
c0 0
1


  

2.1

0
2

12

0

2

1
2

c 

.

c  c 
c1








  

3.2.1

0
3

123

0
2

3

2
3

c 

..

c  c 
c2








  

and so on 
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!n

0
n

n..........4.3.2.1

0
n

3.2.1

0
3

123

0
2

3

2
n

c c 
..........

c 

..

c  c 
cn














  

Hence                                                     n
c 

0n !n

0
n









 

n c
0n !n

n

0 






 

Evaluation of 0c : 

Use normalization condition, 

1  

2

ec
 

c1
2

0

0n

!n

n2

2

0









   

2

ec
2

0


 ; 2

2

ec0




  

Hence                

 

 

Note: 

                                             If  0 †an
!n

n

  

      Then                   0
 )†a(

)exp(
0n

!n

n

2

2










 

    0)aexp()exp( †

2

2




 

 

               )aexp()exp( †

2

2




  is not hermitian. The coherent state   can also be generated 

by displacing the vacuum 0   

 

where )(D   is called displacement operator defined by , 

)aaexp()(D †   

is hermitian. The relation 0)(D    is important as it show how the coherent state can be 

generated..  

n e
0n

!n

n
2

2






 


 

0)(D   
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Important Properties of the displacement operator
 

(1) 0)(D   

Proof: If A and B are operator and satisfies the following : 

      0B,B,AA,B,A   

then                                  
]B,A[BABA]B,A[BABA 2

1
2
1

eeeeeee
   

is called Baker Campbell Housdroff Identity (BCH). 

From above )aaexp( †  , consider A= †a and B = - a , then using  BCH identity 

]a,a[
aa

]a,a[
aa†

†
2
1

ee
†

e                             

†
2
1

ee
†

e)aaexp(

















 

Since ]a,a[
† = -1  

Therefore 
aaaa† e

†
e

2
2
1

e 

2
2
1

ee
†

e )aaexp(





 



 

i.e  aaaa† e
†

e

2
2
1

e 

2
2
1

ee
†

e)aaexp()(D





 


  

0e
†

e

2
2
1

e 0

2
2
1

ee
†

e0)aaexp(0)(D aaaa† 



 


  

0) 0(a since                       0                

........0
!2

a
0

!1

a
0                

0  .........)
!2

a

!1

a
1(0e

22

22
a

























 

so   0
†

e

2
2
1

e0e
†

e

2
2
1

e 0)(D aaa 








                                                                    (1) 

n 2

2

e
0n !n

n
 










 

0 †an
!n

n

  

0
†

e2

2

e0 †a 2

2

en 2

2

e a

!n

n

0n !n

n

0n !n

n 












 



 



                                             (2) 
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From (1) and (2) 

   0)(D   

 Hence  aaaa† e
†

e

2
2
1

e 

2
2
1

ee
†

e)aaexp()(D





 


  is hermitian. 

(2) 
†

ee

2
2
1

e e
†

e

2
2
1

e)aaexp( aaaa† 





 



            

Proof:   We know that the displacement operator is )aaexp()(D †  , 

                       Consider A= †a and B = - a , then using BCH identity 

]a,a[
aa

]a,a[
aa†

†
2
1

ee
†

e                             

†
2
1

ee
†

e)aaexp(

















 

                                           Since ]a,a[
†

= -1  

Therefore 
aaaa† e

†
e

2
2
1

e 

2
2
1

ee
†

e )aaexp(





 



 

i.e  aaaa† e
†

e

2
2
1

e 

2
2
1

ee
†

e)aaexp()(D





 


  

Now, if we consider A= - a and B = †a  and use then use BCH identity we get, 

]a,a[
aa

]a,a[
aa†

†
2
1

ee
†

e                             

†
2
1

e
†

ee)aaexp(

















 

Since ]a,a[
†

= 1  

Therefore 
†

ee

2
2
1

e 

2
2
1

e
†

ee )aaexp( aaaa† 


 



  

hence  
†

ee

2
2
1

e e
†

e

2
2
1

e)aaexp()(D aaaa† 





 



  

(3)  )(D)](exp[)(D)(D
2
1  

 

Proof:       Since       )aaexp()(D †   and )aaexp()(D †   

)aaexp()aaexp()(D)(D ††    

 a)(a)(exp)(D)(D †    
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Using BCH identity                  
]B,A[

BABA 2
1

eeee


   

A = †a)(  , B = a)(    

 

]a)(,a)[(
a)(a)(

]a)(,a)[(
a)(a)(

†

†
2

1

ee
†

e                  

†
2

1

ee
†

e                  

a)(a)(exp)(D)(D





















 

Now calculate
]a)(,a)[( †

2
1

e

 

, 

)(

†2†††2

2

1

††††

2

1
]a)(,a)[(

2
1

e

2
2
1

e                                       

2
1

2
12

2
12

2
1

e                                       

]}a,a[]a,a[]a,a[\]a,a[(exp{                                       

]}a,a[]a,a[]a,a[\]a,a([exp{

†
2
1

e
























 

 

)D(2
1

e                                                                   

2
1

e

2
2
1

e}a)(a)(exp{                                                                    

2
1

e

2
2
1

ee
†

e                                                                   

†
2
1

ee
†

ea)(a)(exp)(D)(D

)(

)(
†

)(
a)(a)(

]a)(,a)[(
a)(a)(†
































 

Solve the following: 

(i)  a)(D a )(D†  

(ii)  ††† a)(D a )(D  

(iii) )(D)(D )(D-1   
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Properties of Coherent States: 

(1) Coherent states are not orthogonal. 

Proof:                                               n e
0n !n

n
2

2

 







 

  

n
 

e
0n !n

n
2

2












 














 


222

2
1

e  

(i) If   then  1  coherent states are normalized. 

(ii) If  then 

                               

0

2

2
1

e          

22
2
1

e
2








































 

Hence Coherent states are not orthogonal, it may be orthogonal for 1 . For large 

separation of the eigen value i.e. 1 , 0
2
  then 0 . 

(2) Coherent states are overcomplete. 

Proof: Consider  2d  

2d represents the surface element in complex plane like ds in real plane. 
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 Rdrddxdyds  

 ddddd ir
2  

mn
!m!n

)mn(imn2
edd                    

mn
!m!n

mn2
edd

m,n

e

0
2
0

m,n

22




  

 


 

 




                  


i

e       

mnfor  0                            

m n for    2                            

2de nm
2
0

)mn(i





 




 

nn
n22

ed2d
n

!n0
2

  
  

If we write X then 

nn
!n

1n2X2
edX2                     

nn
!n

n2X2
eXdX2d

n

X

0

n

X

0

2






 





 

2
!n

0
dX

2
e1n2X           

 
  

 
n

2 nnd  

Hence                                             

 

This is completeness relation for coherent state. 

Over completeness of Coherent states: Overcompleteness of coherent states means that any 

state can be written in terms of the coherent state.    

(i) We can write  and    in an infinite number of ways. 

(ii) We can resolve any state   in terms of coherent states. 

 

 

 









)]2(exp[d               

  d               

d1.

22

2
121

21

21

 

1d21  
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(3)  Expansion of states and operators in terms of the coherent states 

Completeness relation for coherent state is 12d1  


 

This gives, 

 




 




2

2

d
1

        

d
1

 

similary for operator, F 

 




 


 




Fdd
1

   

  d
1

 F   d
1

F

22

2

22

 

If                                             


0n
n nC  

then      

0
!2

†
a

!1

†
a

CC       

3C2C1C0C

1

2

110

3210





















 

i.e. 0)
†

a(f  

n!n                             

nn......4.3.2.1                              

on so and ----                              

3321a                              

221a                             

11a0aa0a

3-n†

2-n†

1-n††1-n†n†













 

0
!n

a
n

n†

  

Evaluate:                   0
!2

†
a

!1

†
a

CC
2

110
















  

0
!2!1

CC
2*

1

*

10 
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Since       
2

2
1

e0


  

2

2
1

* e )(f


  

 




 





2

2
1

*2

2

e )(f  d
1

        

.d
1

 

This is the expansion of 
 
in terms of coherent state. 

(4) Coherent states are minimum uncertainty states: 

Analogy of single mode radiation with a harmonic oscillator, in radiation gauge, 0A 


, 

where A


 is vector potential then A


can be written as 






 


 







)tr.k(i
,k

)tr.k(i
,k,k

,k k

eaea  
V2

1
A


 

In natural unit 1c   ,  

K is wave vector,  

  is unit vector 

  denotes polarization (takes 2 values corresponds to 2 transverse mode of polarization) 

V denotes Interaction Volume 

t

A

c

1
E









 

AB


  

t

A

c

1
AE 0









; )A ,(A


  

For single mode, vector potential 






 


  )tr.k(i
k

)tr.k(i
k eaea

V2

1
A


 

Hamiltonian:       ])A(A[
8

1
rdH 223





          

This reduces to )aa()aaaa(
2

H
2
1††† 


 . This Hamiltonian is for single mode 

radiation. 

Define two hermitian operators be )aa( †   and )aa(i †  . 
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)aa(
2

1
q † 


  - coordinate operator 

)aa(
2

ip † 


 - momentum operator 

which shows   ip  ,q  . 

)aaaaaa(
2

1
)aa(

2

1
q 2†††22†2 





  

)aaaaaa(
2

)aa(
2

p 2†††22†2 





  

)aaaa(pq ††222   

)aa()aaaa(
2

)pq(
2

1
H

2
1†††222 


  

So for one dimensional harmonics oscillator,   ip,q  , )pq(
m2

1
H 222   

Hence single mode radiation is equivalent to unit mass one dimensional harmonic oscillator. 

Thus annihilation and creation operator can be written in terms of coordinate and position 

operator. 

)ipq(
2

1
a 


  

)ipq(
2

1
a† 




 

Uncertainties in q and p for coherent state: 

Let q  and p  be the uncertainty in q (position) and p (momentum) respectively. q  and 

p are square root of the variances of q and p are defined as follows: 

 

 

 

 

 

For )aa(
2

1
q † 


   

22 qqq 

22 ppp 
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  *†*

†

†

a and a Since                             
2

1
      

aa
2

1
      

)aa(
2

1
      

qq


















 

Since ir i   then r
*  2   hence 

r
r  

2

2

 2
 q 







  

 

 

 

 

 






































2

1 2
1 4

2

1
       

1)(
2

1
       

12
2

1
       

   )1aa2(aa
2

1
      

)aaaa(aa
2

1
      

)aa(
2

1
      

qq

2
r2

r

2*

*22*

†2†2

††2†2

2†

22

 

 

hence variance of q  

 



2

1
qqq

222
 

Similarly we can calculate  

i  2 p   ,  
2

 2p 2
i

2 
 .and 

variance of p ;  
2

ppp
222 
 .Thus, 

   
4

1
pq

22
  So,   

2

1
pq  . 

This is the minimum value allowed by Heisenberg uncertainty principle. Hence, Coherent 

state is a minimum uncertainty state. It is the most classical state. 
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(5) Poisson distribution of Photons:  

Let operator  has several eigen values n  corresponding to eigen states n
 

nnn   

If we measure the physical values of operator , we get the variables n , different values 

corresponds to n = 0, 1, 2, 3, …….. 

Suppose we have a mixed state,  

.......cccc 33221100   

Then   is an arbitrary or mixed state can be expanded linearly in terms of a complete set of 

orthonormal states n . Probability that the measurement of 0  is 
2

0c  , 1  is 
2

1c  and so on 

probability that the measurement of n  is 
2

nc  . 

Coherent state is n
!n

 e
0n

n
2

2

 







 so it can be written as 

.....2
!2

 2
e1

!1

 e0e 2

2

2

2

2

2












 

2

e)0(P


 , 
!1
 2

e)1(P
2



, 

!2
 4

e)2(P
2



,……….

!n
 n2

e)n(P
2



 

Now, 

 

nc...........2c1c0c       

nn......221100       

.nn......33221100      

nn      

.1

n210

n0













 

222

0 e0c)0(P


  

!1

 
e1c)1(P

2
222

1





 

!2

 
e2c)2(P

4
222

2





 

                                                                  ……………………………. 
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!n

 
enc)n(P

n2
222

n





 

Hence                                        
!n

 n2
e)n(P

2



 

naa
2
   = average number of photons. 

Thus the expectation value of number of photons is the average number of photons in the 

coherent state. 

!n

 n)n(
e)n(P n ,  

which is Poisson distribution for number of photons in the coherent state 

242222 naa    

The variance of photon in coherent state is  

 

 

 

   

n             

             

aaaaaa             

aaa)aa1(a              

aaaaaa             

aa)aa()n(

2

424

222

2

2

222





















 

Thus for Poisson distribution both variance and mean are equal. 

For large values of n Poisson distribution approaches a Gaussian distribution. 

 

Note: 

!n

 n)n(
e)n(P n , 

)!1n(

 1n)n(
e)1n(P n




   

Therefore                                               
1n

n

)n(P

)1n(P





 

Case (1) If n  is an integer 

(i) For n= n  

1n

n

)n(P

)1n(P





 

                 )n(P n)1n(P )1n(   
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)1n(

)n(P n
)1n(P 


  

             Since 1
)1n(

 n



 

             Therefore )n(P)1n(P   If n  is an integer 

(ii) For  n= n  - 1 

1
ne

)1n(

!n

ne

)1n(P

)n(P
1nn

nn





 



 

                  )n(P )1n(P   

(iii) For  n= n  - 2 

1
1n

n

)2n(P

)1n(P








 

                )2n(P )1n(P   

Conclusion: If n  is an integer out of P(0), P(1), ..etc. )n(P . )n(P is the highest. 
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Case (2) If n  is not an integer 

 For n = n ;   is a fraction <1. 

(i) For n = 0n  

1
1n

n

)n(P

)1n(P

0

0

0

0 






. 

)n(P)1n(P 00   

(ii) For n = 0n  

0
n

n

n

n

)1n(P

)n(P

00

0

0

0 





. 

)n(P)1n(P 00   

(6) Show that 
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a  

Proof:                                               n
n
 e

0n !
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 e
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2

2
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n
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1n

1n
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n
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Replace n by n + 1 
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ae                      
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(7) Show that    iaai e
†

e  

Proof:                                        Niaai ee
†

 

                   Since                  n e
0n !n

n
2

2











 

                               ne ee Ni

0n !n
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                     Hence, 
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0n !n

n)e
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nNi
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n
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2

ee 

 

If 
2
  then 




 ie ee 2
iN

2
iNi

 

Prove the following:  

(1) 
2

2
1

e2
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(2)     0 a   

(3) 24]a ,a[
222    

(4)  
2

i
X,X 21  , where hermitian operators 2,1X  are defined by 21 X iXa   

(5)    02 2   

(6)   nn1d
n

0n

2
  


 

 

 

Coherent State as a Gaussian Wave Packet 

Let X is the eigenstate when the position of the particle in precisely stated by X then 

XXXop   

Where opX  is position operator 

 X)x(  

(i) Orthonormality condition: )XX(XX   

(ii) Completeness relation: 1XXdX   

(iii) Mean position- given by the expectation value 

 

 (X)(X)  dX                  

XX  dX                  

XXdX                  

XXXdX                   

XXdXXX

op

opop













 

which gives position probability density  (X)(X) . The Configuration space function for 

the coherent state  , defined by q , 

If q  is the eigen state, then qqqq   

q = coordinate operator, it is quantum number and q= eigen value, it is c-number 

We know that 00a  . For single mode Harmonic Oscillator )ipq(
2

1
a 




.
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00)ipq(
2

1
q 




         

00)ipq(q 

 

00q p i0q q   

Since 
q

i p



  

00q) 
q

i ( i0q q 



  

00q 
q

0q q 



  

0q q 0q 
q





,  

which is similar to the differential equation y x a  
x

y





on solving we get, 

2ax
2
1

Ae y


  

So 
2q

2
1

Ae0q 


 ; A is constant of integration. 

Using normalization condition 

10qqd

2

 




 

1e qdA 2q2
  





 

1A
2





 which implies 

4
1

A 











 , hence 

 
2q

2
14

1

e0q 














  

Coherent state is  

n e
0n !n

n
2

2

 







 , 

 it can be written as                           0)aexp()exp( †

2

2




 

since
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0) 0(a since                       0                

........0
!2

a
0

!1

a
0                

0  .........)
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!1

a
1(0e

22

22
a 



















 

Hence 0)aexp()aexp()exp(0)aexp()exp( †

2

2
†

2

2




 

Use BCH Identity 

]B,A[
BABA 2

1

eeee   

A =  )aexp( †  and B = )aexp(  

2

)aa(aa 2
1

e
†

ee
†

e


   

Hence  
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22
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1
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e
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e
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e2
1

e

q2
)(
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4
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q2
)(4

1

2q 22q(exp         

part  imaginaryqq222exp          

qq2)(i2exp           

ee

22
2
1

e q

and quadrature distribution is            





























 2

r

2
1

2
) 2q(exp q  

This is Gaussian wave packet which is centered at r 2q 


 .Coherent state can be 

expressed in terms of Gaussian wave packet. 

 

Hermitian Operator 1X  and 2X : 

For the physical meaning of the canonical momentum operator p and canonical operator q of 

the field, we introduce two new hermitian operators  1X  and 2X  as 

q  
2

X1



 , p  

2

1
X2


 , in quantum unit 1  then q  2X1  , p  

2

1
X2


  

21 X iXa  , 21 X iXa 
 

)aa(
2

1
X1

 , )aa(
i 2

1
X2


                                                                                         (1)

 

Which gives  
2

i
X,X 21  . For single mode radiation vector potential is 

 )tr.ksin(X)tr.kcos(X 
V

2
    

eeiXeeX
V2

1
     

e)X iX(e)X iX(
V2
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Which shows that 1X  and 2X  are the amplitude operators of the filed whose phase are 

orthogonal. Thus 1X  and 2X  are called quadrature operators. 

Uncertainties in 1X  and 2X  for coherent state: 

Let 1X  and 2X  be the uncertainty in 1X  and 2X  respectively. 1X  and 2X are square 

root of the variances of 1X  and 2X  are defined as follows: 
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hence variance of 1X   
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2
11 XXX 

2
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22 XXX 
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4

1
XXX

2
1

2
1

2
1   

Similarly we can calculate  

i2
 X   ,  

4

1
X 2

i
2

2  .and 

variance of 2X  ;  
4

1
XXX

2
2

2
2

2
2  .Thus, 

   
16

1
XX

2
2

2
1   So,   

4

1
XX 21  . 

This is the minimum value allowed by Heisenberg uncertainty principle. Hence, Coherent 

state is a minimum uncertainty state.  

 

 


	Use BCH Identity

