Chaudhary Mahadeo Prasad Degree College

(A CONSTITUENT PG COLLEGE OF UNIVERSITY OF ALLAHABD)

Subject: Physics

Prepared by
Dr. Rakesh Kumar
DEPARTMENT OF PHYSICS

Recommended Books:

- Quantum Optics: M. O. Scully and M. S. Zubairy
- Optical Coherence and Quantum Optics: L. Mandel and E. Wolf
- Introduction to Modern Quantum Optics: J S Peng and G X Li
- Quantum Optics: D F Walls and G J Milburn
- Principle of Optics: M Born and E Wolf
- Quantum Optics: M. Fox
- Introductory Quantum Optics: C C Gerry
- Quantum Optics: G S Agarwal
- Mathematical Methods of Quantum Optics: R R Puri
- Concepts of Quantum Optics: P L Knight and L Allen

PAPER - IV: QUANTUMSTATES OF RADIATION (SYLLABUS)

PHY658

Unit I Coherent States offadiation and their Properties, Coherent State as wave packet, Expansion of States and Qperators in Terms of Coherent States. S-
Unit II Density Operator of Radiation, Sudarshan-Glauber Representation, Density Operators of Coherent and Chaotic Radiation, Coherence and Characteristics Functions.

Unit III Polarization and Stokes Parameters, Annihilation and Creation Operators for Modes with General Polarization, Unpolarized Light.
Unit IV Photoelectron Countiog Distribution, Hapbuy Brown and Twiss Experiment, Bunching and Antibunching, Example bfpure Fök state for Antibunching of Photons,
Unit V Schwartz Inequalities and Quantum Behaviour of Optical Fields」 Squeezed States of Radiation (Elementary Discussion)

Introduction of annihilation, creation operator and Occupation number

states

I Quantum condition for system of particle:

$$
\begin{gather*}
{\left[\mathrm{q}_{\mathrm{m}}, \mathrm{q}_{\mathrm{n}}\right]=0 ;\left[\mathrm{p}_{\mathrm{m}}, \mathrm{p}_{\mathrm{n}}\right]=0 ;} \\
{\left[\mathrm{q}_{\mathrm{m}}, \mathrm{p}_{\mathrm{n}}\right]=\mathrm{i} \delta_{\mathrm{mn}}} \tag{1}
\end{gather*}
$$

II Quantum condition for system field:

$$
\begin{align*}
& {\left[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi\left(\overrightarrow{\mathrm{r}}^{\prime}, \mathrm{t}\right)\right]=0 ;\left[\psi^{\dagger}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi^{\dagger}\left(\overrightarrow{\mathrm{r}}^{\prime}, \mathrm{t}\right)\right]=0} \\
& {\left[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi^{\dagger}\left(\overrightarrow{\mathrm{r}}^{\prime}, \mathrm{t}\right)\right]=\delta^{3}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)} \tag{2}
\end{align*}
$$

Non Relativistic Schrödinger wave equation

Hamiltonian Formalism

$$
\begin{equation*}
\mathrm{H}=\mathrm{s}^{3} \overrightarrow{\mathrm{r}}\left[\frac{-1}{2 m} \psi^{*} \nabla \psi^{3}+\mathrm{v} \psi+\psi\right] \tag{3}
\end{equation*}
$$

Here, ψ is wave function

$$
\begin{equation*}
\delta \mathrm{H}=\int \mathrm{d}^{3}-\overline{\mathrm{r}}\left[\frac{1}{2 \mathrm{~m}} \bar{\nabla} \psi^{\dagger} \bar{\nabla} \psi+\mathrm{V} \psi^{\dagger} \psi\right] \tag{4}
\end{equation*}
$$

Here, ψ is field operatof and ψ^{\dagger} is Hermitian conjugate of ψ.
Non Relativistic Schrodinger equation-is: कइसो वन्तु विश्वृ:

$$
\mathrm{i} \psi=[\psi, \mathrm{H}]
$$

Expansion of ψ, ψ^{\dagger} in terms of eigen function u_{k} and other complex conjugates:-

Consider $\mathrm{u}_{\mathrm{k}}(\mathrm{k}=1,2,3, \ldots \ldots \ldots) \longrightarrow$ complete family of orthonormal eigen function of system of particles or field.

Orthonormality condition:
Completeness relation:

$$
\left.\begin{array}{c}
\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \mathrm{u}_{\mathrm{k}}^{*} \mathrm{u}_{\mathrm{l}}=\delta_{\mathrm{kl}} \tag{6}\\
\sum_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}(\mathrm{r}) \mathrm{u}_{\mathrm{k}}^{*}\left(\overrightarrow{\mathrm{r}}^{\prime}\right)=\delta^{3}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)
\end{array}\right\}
$$

Expansion of $\psi: \psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\sum_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}(\mathrm{t}) \mathrm{u}_{\mathrm{k}(\overrightarrow{\mathrm{r}})}$
Where u_{k} is c-number and $a_{k}(t)$ is q-number.
Eq.(7) can be solved to obtained $\mathrm{a}_{\mathrm{k}}(\mathrm{t})$

$$
\begin{align*}
& \int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \tag{8}\\
& \psi(\overrightarrow{\mathrm{r}}, \mathrm{t}) \mathrm{u}_{\mathrm{k}}^{*}(\overrightarrow{\mathrm{r}})=\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \sum_{\mathrm{l}} \mathrm{a}_{\mathrm{l}}(\mathrm{t}) \mathrm{u}_{\mathrm{l}(\overrightarrow{\mathrm{r}})} \mathrm{u}_{\mathrm{k}}^{*}(\overrightarrow{\mathrm{r}}) \tag{9}\\
& \int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \psi(\overrightarrow{\mathrm{r}}, \mathrm{t}) \mathrm{u}_{\mathrm{k}}^{*}(\overrightarrow{\mathrm{r}})=\sum_{\mathrm{l}} \mathrm{a}_{\mathrm{l}}(\mathrm{t}) \delta_{\mathrm{kl}}=\mathrm{a}_{\mathrm{k}}(\mathrm{t})
\end{align*}
$$

Hermitian Conjugate of Eq.(9) is

$$
\begin{equation*}
\mathrm{a}_{\mathrm{k}}^{\dagger}(\mathrm{t})=\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}}^{\prime} \psi^{\dagger}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \mathrm{u}_{\mathrm{k}^{\prime}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right) \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
{\left[\mathrm{a}_{\mathrm{k}}(\mathrm{t}), \mathrm{a}_{\mathrm{k}}^{\dagger}(\mathrm{t})\right] } & =\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \mathrm{~d}^{3} \overrightarrow{\mathrm{r}}^{\prime} \mathrm{u}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}) \mathrm{u}_{\mathrm{k}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right)\left[\psi(\overrightarrow{\mathrm{r}}, \mathrm{t}), \psi^{\dagger}\left(\overrightarrow{\mathrm{r}}^{\prime}, \mathrm{t}\right)\right] \\
& =\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \mathrm{~d}^{3} \overrightarrow{\mathrm{r}}^{\prime} \mathrm{u}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}) \mathrm{u}_{\mathrm{k}^{\prime}}\left(\overrightarrow{\mathrm{r}}^{\prime}\right) \delta^{3}\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right) \\
& =\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}}^{3} \mathrm{~d}^{3} \overrightarrow{\mathrm{r}}^{\prime} \mathrm{u}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}) \mathrm{u}_{\mathrm{k}^{\prime}}(\overrightarrow{\mathrm{r}}) \\
& =\delta_{\mathrm{kk}^{\prime}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& {\left[\mathrm{a}_{\mathrm{k}}(\mathrm{t}), \mathrm{a}_{\mathrm{k}^{\prime}}(\mathrm{t})\right]=0} \\
& {\left[\mathrm{a}_{\mathrm{k}}^{\dagger}(\mathrm{t}), \mathrm{a}_{\mathrm{k}^{\prime}}^{\dagger}(\mathrm{t})\right]=0} \\
& {\left[\mathrm{a}_{\mathrm{k}}(\mathrm{t}), \mathrm{a}_{\mathrm{k}^{\prime}}^{\dagger}(\mathrm{t})\right]=\delta_{\mathrm{kk}^{\prime}}}
\end{aligned}
$$

Number Operator:

$$
\psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\sum_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}(\mathrm{t}) \mathrm{u}_{\mathrm{k}(\mathrm{r})} \text { and } \psi^{3}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\sum_{\mathrm{k}}^{2} \mathrm{a}_{\mathrm{k}}(\mathrm{t}) \mathrm{u}_{\mathrm{k}(\overrightarrow{\mathrm{r}})} \text { वत्तु विशबत: } 0
$$

From Eq.(4)
$\mathrm{H}=\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}}\left[\frac{1}{2 \mathrm{~m}} \bar{\nabla} \psi^{\dagger} \bar{\nabla} \psi+\mathrm{V} \psi{ }^{+} \mathrm{q}^{2}\right\rangle$
If u_{k} 's are the eigen function with eigenvaluescmint inen

$$
\mathrm{H}=\sum_{\mathrm{k}} \mathrm{E}_{\mathrm{k}} \mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}
$$

H is the operator for number of particle in mode k ,

$$
\mathrm{H}=\sum_{\mathrm{k}} \mathrm{E}_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}
$$

Where $\mathrm{N}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}^{\dagger} \mathrm{a}_{\mathrm{k}}$ and the number operator $\mathrm{N}=\sum_{\mathrm{k}} \mathrm{N}_{\mathrm{k}}$
For single mode, $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=1$ and $\mathrm{N}=\mathrm{a}^{\dagger} \mathrm{a}$

Occupation number state:

If $|\mathrm{n}\rangle$ is the eigen state of number operator then,
$\mathrm{N}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle ;$
Orthonormality condition: $\langle\mathrm{n} \mid \mathrm{m}\rangle=\delta_{\mathrm{nm}}$;
Completeness relation: $\sum_{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|=1$.
These states are known as occupation number states.
Commutation relation for \mathbf{a}, \mathbf{N} and interpretation of a :
$[a, N]=\left[a, a^{\dagger} a\right]=\left[a, a^{\dagger}\right] a=a$
$\mathrm{aN}-\mathrm{Na}=\mathrm{a}$
$\mathrm{Na}=\mathrm{a}(\mathrm{N}-1)$
In general $f(N) a=a f(N-1)$
Interpretation of a: If $|\mathrm{n}\rangle$ is the occupation number state with n particles then

$$
\begin{aligned}
\mathrm{N}|\mathrm{n}\rangle= & \mathrm{n}|\mathrm{n}\rangle \\
\mathrm{N}(\mathrm{a}|\mathrm{n}\rangle &) \\
= & a(\mathrm{~N}-1)|\mathrm{n}\rangle \\
& =\mathrm{a}(\mathrm{n}-1)|\mathrm{n}\rangle \\
& =(\mathrm{n}-1)(\mathrm{a}|\mathrm{n}\rangle)
\end{aligned}
$$

'a' decreases the occupation number by 1 . So, it is called annihilation operator.
Commutation relation for a, N and interpretation of $a t$:
$\left[\mathrm{a}^{\dagger}, \mathrm{N}\right]=\left[\mathrm{a}^{\dagger}, \mathrm{a}^{\dagger} \mathrm{a}\right]=\mathrm{a}^{\dagger}\left[\mathrm{a}^{\dagger}, \mathrm{a}\right]=-\mathrm{a}^{\dagger}$
$\mathrm{a}^{\dagger} \mathrm{N}-\mathrm{Na}^{\dagger}=-\mathrm{a}^{\dagger}$
$\mathrm{Na}^{\dagger}=\mathrm{a}^{\dagger}(\mathrm{N}+1)$
In general $f(N) a^{\dagger}=a^{\dagger} f(N+1)$
Interpretation of a: If $|\mathrm{n}\rangle$ is the occupation number state with n particles

$$
\begin{aligned}
& \mathrm{N}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle \\
& \begin{aligned}
& \mathrm{N}\left(\mathrm{a}^{\dagger}|\mathrm{n}\rangle\right.) \\
&=\mathrm{a}^{\dagger}(\mathrm{N}+1)|\mathrm{n}\rangle \\
&=\mathrm{a}^{\dagger}(\mathrm{n}+1)|\mathrm{n}\rangle \\
&=(\mathrm{n}+1)\left(\mathrm{a}^{\dagger}|\mathrm{n}\rangle\right)
\end{aligned}
\end{aligned}
$$

' $a \dagger$ ' increases the occupation number by 1 . So, it is called creation operator.
Action of $|\mathrm{n}\rangle$ on a and a^{\dagger} :
Since ' a ' is annihilation operator so we can write
$a|n\rangle=\alpha|n-1\rangle$
Hermitian conjugate of Eq.(13) is
$\langle\mathrm{n}| \mathrm{a}^{\dagger}=\langle\mathrm{n}-1| \alpha^{*}$
Scalar Product of (13) and (14) is
$\langle n| a^{\dagger} \mathrm{a}|\mathrm{n}\rangle=\langle\mathrm{n}-1| \alpha^{*} \alpha|\mathrm{n}-1\rangle ; \mathrm{N}=\mathrm{a}^{\dagger} \mathrm{a}$
$\langle\mathrm{n}| \mathrm{N}|\mathrm{n}\rangle=|\alpha|^{2}\langle\mathrm{n}-1 \mid \mathrm{n}-1\rangle ; \mathrm{N}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle$
$\mathrm{n}\langle\mathrm{n} \mid \mathrm{n}\rangle=|\alpha|^{2}\langle\mathrm{n}-1 \mid \mathrm{n}-1\rangle$
$\mathrm{n}=|\alpha|^{2} ;\langle\mathrm{n} \mid \mathrm{n}\rangle=\langle\mathrm{n}-1 \mid \mathrm{n}-1\rangle=1$
$\alpha=\sqrt{\mathrm{n}}$
Hence

Hermitian conjugate of Eq. (15) is नो भदः कतवो वन्तु विश्वतः
$\langle\mathrm{n}| \mathrm{a}=\langle\mathrm{n}+1| \beta^{*}$
Scalar Product of Eq.(15) andSEq.(16) is $\langle\mathrm{n}| \mathrm{aa}^{\dagger}|\mathrm{n}\rangle=\langle\mathrm{n}+1| \beta^{*} \beta|\mathrm{n}+1\rangle ; \mathrm{N}^{4}$ थि man^{\dagger}
$\langle\mathrm{n}| \mathrm{N}+1|\mathrm{n}\rangle=|\beta|^{2}\langle\mathrm{n}+1 \| \mathrm{n}+1\rangle ; \mathrm{N}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle$
$(\mathrm{n}+1)\langle\mathrm{n} \| \mathrm{n}\rangle=|\beta|^{2}\langle\mathrm{n}+1 \| \mathrm{n}+1\rangle$
$\mathrm{n}+1=|\beta|^{2} ;\langle\mathrm{n} \| \mathrm{n}\rangle=\langle\mathrm{n}+1 \| \mathrm{n}+1\rangle=1$
$\beta=\sqrt{\mathrm{n}+1}$
Hence

$$
\mathrm{a}^{\dagger}|\mathrm{n}\rangle=\sqrt{\mathrm{n}+1}|\mathrm{n}+1\rangle
$$

Generalization to multimode:

$\left[\mathrm{a}_{\mathrm{k}}, \mathrm{a}_{\mathrm{k}^{\prime}}\right]=0$
$\left[\mathrm{a}_{\mathrm{k}}^{\dagger}, \mathrm{a}_{\mathrm{k}^{\prime}}^{\dagger}\right]=0$
$\left[\mathrm{a}_{\mathrm{k}}, \mathrm{a}_{\mathrm{k}^{\prime}}^{\dagger}\right]=\delta_{\mathrm{kk}^{\prime}}$
$\left|\left\{\mathrm{n}_{\mathrm{k}}\right\}\right\rangle=\left|\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4} \ldots \ldots \ldots \ldots . . \mathrm{n}_{\mathrm{k}}, \ldots \ldots \ldots ..\right\rangle$
$\mathrm{N}_{\mathrm{k}}\left|\left\{\mathrm{n}_{\mathrm{k}}\right\}\right\rangle=\mathrm{n}_{\mathrm{k}}\left|\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4} \ldots \ldots \ldots \ldots ., \mathrm{n}_{\mathrm{k}}, \ldots \ldots \ldots ..\right\rangle$
$\mathrm{a}_{\mathrm{k}}\left|\left\{\mathrm{n}_{\mathrm{k}}\right\}\right\rangle=\sqrt{\mathrm{n}_{\mathrm{k}}}\left|\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4} \ldots \ldots \ldots \ldots . . \mathrm{n}_{\mathrm{k}}-1, \ldots \ldots \ldots.\right\rangle$
$\mathrm{a}_{\mathrm{k}}^{\dagger}\left|\left\{\mathrm{n}_{\mathrm{k}}\right\}\right\rangle=\sqrt{\mathrm{n}_{\mathrm{k}}+1}\left|\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}, \mathrm{n}_{4} \ldots \ldots \ldots \ldots . . \mathrm{n}_{\mathrm{k}}+1, \ldots \ldots \ldots.\right\rangle$

COHERENT STATE ($|\alpha\rangle$):

It is an eigenstate of annihilation operator ' a '.

$$
\begin{equation*}
\mathrm{a}|\alpha\rangle=\alpha|\alpha\rangle \tag{17}
\end{equation*}
$$

α be complex number

$$
\begin{equation*}
\alpha=\alpha_{r}+i \alpha_{i}=|\alpha| e^{i \theta_{\alpha}} \tag{18}
\end{equation*}
$$

Relation between $|\alpha\rangle$ and $|n\rangle$:

We know that $|\alpha\rangle=\sum_{\mathrm{n}=0}^{\infty} \mathrm{c}_{\mathrm{n}}|\mathrm{n}\rangle$,
using equation (17)

आ नो भदर्ता करव $\left.\sum_{n} a|n\rangle=\sum_{n=0}^{\infty} c_{n} \alpha \mid n\right\}$

$\because \mathrm{a}|\mathrm{n}\rangle=\sqrt{\mathrm{n}}|\mathrm{n}-1\rangle$

$$
\sum_{n=1}^{\infty} c_{n} \sqrt{n}|n-1\rangle=\alpha \sum_{n=0}^{\infty} c_{n}|n\rangle
$$

$$
\sqrt{1} c_{1}|0\rangle+\sqrt{2} c_{2}|1\rangle+\sqrt{3} c_{3}|2\rangle+\ldots \ldots \ldots \ldots . .=\alpha c_{0}|0\rangle+\alpha c_{1}|1\rangle+\alpha c_{2}|2\rangle+.
$$

\qquad
Comparing the coefficients of the occupation number states on both sides,
$|0\rangle \Rightarrow \mathrm{c}_{1}=\frac{\alpha \mathrm{c}_{0}}{\sqrt{1}}$
$|1\rangle \Rightarrow \mathrm{c}_{2}=\frac{\alpha \mathrm{c}_{1}}{\sqrt{2}}=\frac{\alpha \cdot \alpha \mathrm{c}_{0}}{\sqrt{2} \cdot \sqrt{1}}=\frac{\alpha^{2} \mathrm{c}_{0}}{\sqrt{1.2}}$
$|2\rangle \Rightarrow c_{3}=\frac{\alpha c_{2}}{\sqrt{3}}=\frac{\alpha \alpha^{2} c_{0}}{\sqrt{3} \cdot \sqrt{2} \cdot \sqrt{1}}=\frac{\alpha^{3} c_{0}}{\sqrt{1 \cdot 2 \cdot 3}}$
and so on
$|n\rangle \Rightarrow c_{n}=\frac{\alpha c_{2}}{\sqrt{3}}=\frac{\alpha \alpha^{2} c_{0}}{\sqrt{3} \cdot \sqrt{2} \cdot \sqrt{1}}=\frac{\alpha^{3} c_{0}}{\sqrt{1.2 .3}}=\ldots \ldots \ldots=\frac{\alpha^{n} c_{0}}{\sqrt{1.2 .3 .4 \ldots \ldots ~}}=\frac{\alpha^{n} c_{0}}{\sqrt{n!}}$

Hence

$$
\begin{aligned}
& |\alpha\rangle=\sum_{n=0}^{\infty} \frac{\alpha^{n} c_{0}}{\sqrt{n!}}|n\rangle \\
& |\alpha\rangle=c_{0} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
\end{aligned}
$$

Evaluation of c_{0} :

Use normalization condition,

$$
\langle\alpha \mid \alpha\rangle=1
$$

$$
1=\left|c_{0}\right|^{2} \sum_{n=0}^{\infty} \frac{|\alpha|^{2 n}}{n!}=\left|c_{0}\right|^{2} e^{|\alpha|^{2}}
$$

$$
\left|c_{0}\right|^{2}=\mathrm{e}^{-|\alpha|^{2}} ; \mathrm{c}_{0}=\mathrm{e}^{-\frac{|\alpha|^{2}}{2}}
$$

Hence

Note:

Then

$$
\begin{aligned}
& 0 \text { आ नो भदा: } \\
& \text { If }|\mathrm{n}\rangle=\frac{\mathrm{a}^{\dagger}}{\sqrt{\mathrm{n}!}}|0\rangle
\end{aligned}
$$

$$
|\alpha\rangle=
$$

$\exp \left(-\frac{|\alpha|^{2}}{2}\right) \exp \left(\alpha \mathrm{a}^{\dagger}\right)$ is not hermitian. The coherent state $|\alpha\rangle$ can also be generated by displacing the vacuum $|0\rangle$

$$
|\alpha\rangle=\mathrm{D}(\alpha)|0\rangle
$$

where $\mathrm{D}(\alpha)$ is called displacement operator defined by,

$$
D(\alpha)=\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)
$$

is hermitian. The relation $|\alpha\rangle=\mathrm{D}(\alpha)|0\rangle$ is important as it show how the coherent state can be generated..

Important Properties of the displacement operator

(1) $\therefore|\alpha\rangle=\mathrm{D}(\alpha)|0\rangle$

Proof: If A and B are operator and satisfies the following :
then

$$
\begin{gathered}
[[\mathrm{A}, \mathrm{~B}], \mathrm{A}]=\llbracket \mathrm{A}, \mathrm{~B}], \mathrm{B}]=0 \\
\mathrm{e}^{\mathrm{A}+\mathrm{B}}=\mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}} \mathrm{e}^{-\frac{1}{2}[\mathrm{~A}, \mathrm{~B}]}=\mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}}=\mathrm{e}^{\mathrm{A}+\mathrm{B}+\frac{1}{2}[\mathrm{~A}, \mathrm{~B}]}
\end{gathered}
$$

is called Baker Campbell Housdroff Identity (BCH).
From above $\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)$, consider $A=\alpha a^{\dagger}$ and $B=-\alpha^{*}$ a, then using BCH identity

$$
\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)=\mathrm{e}^{\alpha a^{\dagger}} \mathrm{e}^{-\alpha^{*}} \mathrm{e}^{-\frac{1}{2}\left[\alpha a^{\dagger},-\alpha^{*} \mathrm{a}\right]}
$$

Since $\left[a^{\dagger}, a\right]=-1$
Therefore $\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)=\mathrm{q}^{\alpha a} \mathrm{a}^{\dagger} \mathrm{e}^{-\alpha^{*}} \mathrm{e}^{-\frac{1}{2}|\alpha|^{2}}=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha \alpha^{\dagger}} \mathrm{e}^{-}$
so $\quad D(\alpha)|0\rangle=e^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha a^{\dagger}} \mathrm{e}^{-\alpha^{*}}|0\rangle=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha a^{\dagger}}|0\rangle$

$$
\begin{gather*}
|\alpha\rangle=e^{-\frac{|\alpha|^{2}}{2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle} \tag{1}\\
|n\rangle=\frac{a^{\dagger^{n}}}{\sqrt{n!}}|0\rangle
\end{gather*}
$$

$$
\begin{aligned}
& \left.\left.0-\alpha^{*} a\right\rangle=\left(1-\frac{\alpha^{*} \mathrm{a}}{1!} 0 \frac{\alpha^{* 2} \mathrm{a}^{2}}{2!}-\ldots \ldots,\right)^{0} 0\right\rangle
\end{aligned}
$$

From (1) and (2)

$$
\therefore|\alpha\rangle=\mathrm{D}(\alpha)|0\rangle
$$

Hence $\mathrm{D}(\alpha)=\exp \left(\alpha \mathrm{a}^{\dagger}-\alpha^{*} \mathrm{a}\right)=\mathrm{e}^{\alpha \mathrm{a}^{\dagger}} \mathrm{e}^{-\alpha^{*} \mathrm{a}} \mathrm{e}^{-\frac{1}{2}|\alpha|^{2}}=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha \mathrm{a}^{\dagger}} \mathrm{e}^{-\alpha^{*} \mathrm{a}}$ is hermitian.
(2) $\exp \left(\alpha \mathrm{a}^{\dagger}-\alpha^{*} \mathrm{a}\right)=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha \mathrm{a}^{\dagger}} \mathrm{e}^{-\alpha^{*} \mathrm{a}}=\mathrm{e}^{\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{-\alpha^{*} \mathrm{a}} \mathrm{e}^{\alpha \mathrm{a}^{\dagger}}$

Proof: We know that the displacement operator is $\mathrm{D}(\alpha)=\exp \left(\alpha \mathrm{a}^{\dagger}-\alpha^{*} \mathrm{a}\right)$,
Consider $\mathrm{A}=\alpha \mathrm{a}^{\dagger}$ and $\mathrm{B}=-\alpha^{*} \mathrm{a}$, then using BCH identity

Now, if we consider $A=-\alpha^{*}$ a and $B=\alpha a^{\dagger}$ and use then use $B C H$ identity we get,

Since $\left[\mathrm{a}, \mathrm{a}^{\dagger}\right]=1$
Therefore $\exp \left(-\alpha^{*} \mathrm{a}+\alpha \mathrm{a}^{\dagger}\right)=\mathrm{e}^{-\alpha^{*}} \mathrm{a}^{\alpha \mathrm{a}^{\dagger}} \mathrm{e}^{\frac{1}{2}|\alpha|^{2}}=\mathrm{e}^{\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{-\alpha^{*} \mathrm{a}} \mathrm{e}^{\alpha \mathrm{a}^{\dagger}}$
hence $\mathrm{D}(\alpha)=\exp \left(\alpha \mathrm{a}^{\dagger}-\alpha^{*} \mathrm{a}\right)=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{\alpha \mathrm{a}^{\dagger}} \mathrm{e}^{-\alpha^{*} \mathrm{a}}=\mathrm{e}^{\frac{1}{2}|\alpha|^{2}} \mathrm{e}^{-\alpha^{*}} \mathrm{a}^{\alpha \mathrm{a}^{\dagger}}$
(3) $\mathrm{D}(\alpha) \mathrm{D}(\beta)=\exp \left[\frac{1}{2}\left(\alpha \beta^{*}-\alpha^{*} \beta\right)\right] \mathrm{D}(\alpha+\beta)$

Proof: \quad Since $\quad D(\alpha)=\exp \left(\alpha a^{\dagger}-\alpha^{*} a\right)$ and $D(\beta)=\exp \left(\beta a^{\dagger}-\beta^{*} a\right)$

$$
\begin{gathered}
D(\alpha) D(\beta)=\exp \left(\alpha \mathrm{a}^{\dagger}-\alpha^{*} \mathrm{a}\right) \exp \left(\beta \mathrm{a}^{\dagger}-\beta^{*} \mathrm{a}\right) \\
\mathrm{D}(\alpha) \mathrm{D}(\beta)=\exp \left\{(\alpha+\beta) \mathrm{a}^{\dagger}-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right\}
\end{gathered}
$$

Using BCH identity

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{A}+\mathrm{B}}=\mathrm{e}^{\mathrm{A}} \mathrm{e}^{\mathrm{B}} \mathrm{e}^{-\frac{1}{2}[\mathrm{~A}, \mathrm{~B}]} \\
& \mathrm{A}=(\alpha+\beta) \mathrm{a}^{\dagger}, \mathrm{B}=-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}
\end{aligned}
$$

$$
D(\alpha) D(\beta)=\exp \left\{(\alpha+\beta) a^{\dagger}-\left(\alpha^{*}+\beta^{*}\right) a\right\}
$$

$$
\begin{aligned}
& =e^{(\alpha+\beta) \mathrm{a}^{\dagger}} \mathrm{e}^{-\left(\alpha^{*}+\beta^{*}\right) a} \mathrm{e}^{-\frac{1}{2}\left[(\alpha+\beta) \mathrm{a}^{\dagger},-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right]} \\
& =\mathrm{e}^{(\alpha+\beta) \mathrm{a}^{\dagger}} \mathrm{e}^{-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}} \mathrm{e}^{\frac{1}{2}\left[(\alpha+\beta) \mathrm{a}^{\dagger},\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right]}
\end{aligned}
$$

Now calculate $\mathrm{e}^{\frac{1}{2}\left[(\alpha+\beta) \mathrm{a}^{\dagger},\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right]}$,
$\mathrm{e}^{\frac{1}{2}\left[(\alpha+\beta) \mathrm{a}^{\dagger},\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right]}=\exp \left\{\frac{1}{2}\left(\left[\alpha \mathrm{a}^{\dagger}, \alpha^{*} \mathrm{a}\right] \backslash+\left[\alpha \mathrm{a}^{\dagger}, \beta^{*} \mathrm{a}\right]+\left[\beta \mathrm{a}^{\dagger}, \alpha^{*} \mathrm{a}\right]+\left[\beta \mathrm{a}^{\dagger}, \beta^{*} \mathrm{a}\right]\right\}\right.$

$$
=\exp \left\{\frac{1}{2}\left(\alpha \alpha^{2}\left[a^{\dagger} \mathrm{a}\right]+\alpha \beta \mid \mathrm{a}^{\dagger}, \mathrm{a}\right]+\beta \alpha^{*}\left[\mathrm{a}^{\dagger}, \mathrm{a}\right]+|\beta|^{2}\left[\mathrm{a}^{\dagger}, \mathrm{a}\right]\right\}
$$

$$
=-\frac{1}{2} \alpha \alpha^{2}=\frac{1}{2}|\beta|^{2}-\frac{1}{2} \alpha \beta^{*}-\frac{1}{2} \beta \alpha^{*}
$$

$$
\int_{n}^{\alpha} \frac{1}{2}|\alpha+\beta|-\frac{1}{e^{2}}\left(\alpha \beta^{*}-\beta \alpha^{*}\right)
$$

$\mathrm{D}(\alpha) \mathrm{D}(\beta)=\exp \left\{(\alpha+\beta) \mathrm{a}^{\dagger}-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right\}=\mathrm{e}^{(\alpha+\beta) \mathrm{a}^{\dagger} \mathrm{e}^{-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}} \mathrm{e}^{\frac{1}{2}}\left[(\alpha+\beta) \mathrm{a}^{\dagger},\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}\right]}$

$$
=\mathrm{e}^{(\alpha+\beta) \mathrm{a}^{\dagger}} \mathrm{e}^{-\left(\alpha^{*}+\beta^{*}\right) \mathrm{a}} \mathrm{e}^{-\frac{1}{2}|\alpha+\beta|^{2}} \mathrm{e}^{\frac{1}{2}\left(\alpha \beta^{*}-\beta \alpha^{*}\right)}
$$

$$
\left.\left.=\exp ^{0}(\alpha+\beta) a^{\dagger}-\alpha^{*}+\beta^{*}\right) a\right\} e^{-\frac{1}{2}|\alpha+\beta|^{2}} e^{\frac{1}{2}\left(\alpha \beta^{*}-\beta \alpha^{*}\right)}
$$

Solve the following:

(i) $\mathrm{D}^{\dagger}(\xi)$ a $\mathrm{D}(\xi)=\mathrm{a}+\xi$
(ii) $\mathrm{D}^{\dagger}(\xi) \mathrm{a}^{\dagger} \mathrm{D}(\xi)=\mathrm{a}^{\dagger}+\xi^{*}$
(iii) $\mathrm{D}^{-1}(\xi)=\mathrm{D}(\xi)=\mathrm{D}(-\xi)$

E Learning Modules

Properties of Coherent States:

(1) Coherent states are not orthogonal.

Proof:

$$
\begin{gathered}
|\alpha\rangle=\mathrm{e}^{-\frac{|\alpha|^{2}}{2} \sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle} \\
|\beta\rangle=\mathrm{e}^{-\frac{|\beta|^{2}}{2} \sum_{\mathrm{n}=0}^{\infty} \frac{\beta^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle} \\
\langle\alpha \mid \beta\rangle=\mathrm{e}^{-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}-2 \alpha^{*} \beta\right)}
\end{gathered}
$$

(i) If $\alpha=\beta$ then $\langle\alpha \mid \beta\rangle=1$ coherent states are normalized.
(ii) If $\alpha \neq \beta$ then

Hence Coherent states $\frac{\text { are }}{\text { 度 }}$ not orthogonal, it may be orthogonatich $|\alpha-\beta| \gg 1$. For large separation of the eigen value i.e. $|\alpha-\beta| \gg 1, \alpha-\left.\beta\right|^{2} \rightarrow 0$ then $\langle\alpha \mid \beta\rangle=0$.
(2) Coherent states are overcomplete.

Proof: Consider $\int \mathrm{d}^{2} \alpha|\alpha\rangle\langle\alpha|$
$\mathrm{d}^{2} \alpha \rightarrow$ represents the surface efement in complex plane like ds in real plane.

$$
\begin{aligned}
& \mathrm{ds}=\mathrm{dxdy}=\operatorname{Rdrd} \theta \\
& \mathrm{d}^{2} \alpha=\mathrm{d} \alpha_{\mathrm{r}} \mathrm{~d} \alpha_{\mathrm{i}}=|\alpha| \mathrm{d}|\alpha| \mathrm{d} \theta_{\alpha} \\
& \int d^{2} \alpha|\alpha\rangle\langle\alpha|=\int d^{2} \alpha e^{-|\alpha|^{2}} \sum_{n, m} \frac{\alpha^{n} \alpha^{* m}}{\sqrt{n!} \sqrt{m!}}|n\rangle\langle m| \\
& =\int_{0}^{\infty}|\alpha| \mathrm{d}|\alpha| \int_{0}^{2 \pi} \mathrm{~d} \theta_{\alpha} \mathrm{e}^{-|\alpha|^{2}} \sum_{\mathrm{n}, \mathrm{~m}} \frac{|\alpha|^{\mathrm{n}+\mathrm{m}_{\mathrm{e}} \mathrm{i}(\mathrm{n}-\mathrm{m}) \theta_{\alpha}}}{\sqrt{\mathrm{n}!} \sqrt{\mathrm{m}!}}|\mathrm{n}\rangle\langle\mathrm{m}| \\
& \because \alpha=|\alpha| \mathrm{e}^{\mathrm{i} \theta} \alpha \\
& \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(\mathrm{n}-\mathrm{m}) \theta} \alpha \mathrm{d} \theta_{\alpha}=2 \pi \delta_{\mathrm{nm}} \\
& \text { If we write }|\alpha|=X \text { then } \mathrm{d}^{2} \alpha|\alpha\rangle\langle\alpha|=2 \pi \int_{0}^{\infty}|\alpha| \mathrm{d}|\alpha| e^{-\alpha|\alpha|}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence } \\
& \frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha|=1
\end{aligned}
$$

This is completeness relation for coherent state.
Over completeness of Coherent states: Overcompleteness of coherent states means that any state can be written in terms of the coherent state.
(i) We can write $|\alpha\rangle$ and $\langle\alpha|$ in an infinite number of ways.
(ii) We can resolve any state $|\alpha\rangle$ in terms of coherent states.

$$
\begin{aligned}
|\alpha\rangle=|\alpha\rangle .1 & =|\alpha\rangle \frac{1}{\pi} \int \mathrm{~d}^{2} \beta|\beta\rangle\langle\beta| \\
= & \frac{1}{\pi} \int \mathrm{~d}^{2} \beta\langle\beta \mid \alpha\rangle|\beta\rangle \\
& =\frac{1}{\pi} \int \mathrm{~d}^{2} \beta \exp \left[-\frac{1}{2}\left(|\alpha|^{2}+|\beta|^{2}-2 \beta^{*} \alpha\right)\right]|\beta\rangle
\end{aligned}
$$

E Learning Modules

(3) Expansion of states and operators in terms of the coherent states

Completeness relation for coherent state is $\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha|=1$
This gives,

$$
\begin{aligned}
|\psi\rangle & =\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha \mid \psi\rangle \\
& =\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha\langle\alpha \mid \psi\rangle|\alpha\rangle
\end{aligned}
$$

similary for operator, F

If
then

$$
\begin{aligned}
\mathrm{F} & =\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\alpha| \mathrm{F} \frac{1}{\pi} \int \mathrm{~d}^{2} \beta|\beta\rangle\langle\beta| \\
& =\frac{1}{\pi^{2}} \int \mathrm{~d}^{2} \alpha \mathrm{~d}^{2} \beta\langle\alpha| \mathrm{F}|\beta\rangle|\alpha\rangle\langle\beta|
\end{aligned}
$$

Since

$$
\begin{aligned}
&\langle\alpha \mid 0\rangle=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \\
&\langle\alpha \mid \psi\rangle=\mathrm{f}\left(\alpha^{*}\right) \mathrm{e}^{-\frac{1}{2}|\alpha|^{2}} \\
&|\psi\rangle=\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha|\alpha\rangle\langle\cdot \alpha \mid \psi\rangle \\
&=\frac{1}{\pi} \int \mathrm{~d}^{2} \alpha \mathrm{f}\left(\alpha^{*}\right) \mathrm{e}^{-\frac{1}{2}|\alpha|^{2}}|\alpha\rangle
\end{aligned}
$$

This is the expansion of $|\psi\rangle$ in terms of coherent state.

(4) Coherent states are minimum uncertainty states:

Analogy of single mode radiation with a harmonic oscillator, in radiation gauge, $\vec{\nabla} \cdot \overrightarrow{\mathrm{A}}=0$, where \vec{A} is vector potential then \vec{A} can be written as

In natural unit $\hbar=\mathrm{c}=1$,
K is wave vector, ε is unit vector
λ denotes polarization (takes 2 values corresponds to 2 transverse mode of polarization)
V denotes Interaction Volume
$\overrightarrow{\mathrm{E}}=-\vec{\nabla} \phi-\frac{1}{\mathrm{c}} \frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}$
$\mathrm{B}=\vec{\nabla} \times \overrightarrow{\mathrm{A}}$
$\overrightarrow{\mathrm{E}}=-\vec{\nabla} \overrightarrow{\mathrm{A}}_{0}-\frac{1}{\mathrm{c}} \frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}} ; \mathrm{A}^{\mu}=(\phi, \overrightarrow{\mathrm{A}})$
For single mode, vector potential

$$
\overrightarrow{\mathrm{A}}=\frac{1}{\sqrt{2 \omega \mathrm{~V}}} \varepsilon\left[\mathrm{a}_{\mathrm{k}} \mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}+\mathrm{a}_{\mathrm{k}}^{+} \mathrm{e}^{-\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}\right]
$$

Hamiltonian: $\quad \mathrm{H}=\int \mathrm{d}^{3} \overrightarrow{\mathrm{r}} \frac{1}{8 \pi}\left[\dot{\mathrm{~A}}^{2}+(\vec{\nabla} \times \overrightarrow{\mathrm{A}})^{2}\right]$
This reduces to $\mathrm{H}=\frac{\omega}{2}\left(\mathrm{a}^{\dagger} \mathrm{a}+\mathrm{aa}^{\dagger}\right)=\omega\left(\mathrm{a}^{\dagger} \mathrm{a}+\frac{1}{2}\right)$. This Hamiltonian is for single mode radiation.

Define two hermitian operators be $\left(\mathrm{a}^{\dagger}+\mathrm{a}\right)$ and $\mathrm{i}\left(\mathrm{a}^{\dagger}-\mathrm{a}\right)$.

$$
\begin{aligned}
& \mathrm{q}=\frac{1}{\sqrt{2 \omega}}\left(\mathrm{a}^{\dagger}+\mathrm{a}\right) \text { - coordinate operator } \\
& \mathrm{p}=\mathrm{i} \sqrt{\frac{\omega}{2}}\left(\mathrm{a}^{\dagger}-\mathrm{a}\right) \text { - momentum operator }
\end{aligned}
$$

which shows $[q, p]=i$.

$$
\begin{aligned}
& \mathrm{q}^{2}=\frac{1}{2 \omega}\left(\mathrm{a}^{\dagger}+\mathrm{a}\right)^{2}=\frac{1}{2 \omega}\left(\mathrm{a}^{\dagger 2}+\mathrm{a}^{\dagger} \mathrm{a}+\mathrm{aa}^{\dagger}+\mathrm{a}^{2}\right) \\
& \mathrm{p}^{2}=-\frac{\omega}{2}\left(\mathrm{a}^{\dagger}-\mathrm{a}\right)^{2}=-\frac{\omega}{2}\left(\mathrm{a}^{\dagger 2}-\mathrm{a}^{\dagger} \mathrm{a}-\mathrm{a}^{\dagger}+\mathrm{a}^{2}\right) \\
& \omega^{2} \mathrm{q}^{2}+\mathrm{p}^{2}=\omega\left(\mathrm{a}^{\dagger} \mathrm{a}+\mathrm{aa}^{\dagger}\right) \\
& \mathrm{H}=\frac{1}{2}\left(\omega^{2} \mathrm{q}^{2}+\mathrm{p}^{2}\right)=\frac{\omega}{2}\left(\mathrm{a}^{\dagger} \mathrm{a}+\mathrm{aa}^{\dagger}\right)=\omega\left(\mathrm{a}^{\dagger} \mathrm{a}+\frac{1}{2}\right)
\end{aligned}
$$

So for one dimensional harmonies oscillator, $[q, p]=i$,
Hence single mode radiation is equivalent to unit mass one dimpensional harmonic oscillator.
Thus annihilation and ereation operator can be written in terms of coordinate and position operator.

$$
\begin{aligned}
& \text { 3ा नो भaन: } \frac{1}{\sqrt{2 \omega}}(\omega q+\dot{p}) \\
& a^{\dagger}=\frac{1}{\sqrt{2 \omega}}(\omega q-i p)
\end{aligned}
$$

Uncertainties in q and p for coherent state:

 Δp are square root of the variances of q and p are defined as follows:

$$
\begin{aligned}
& \Delta q=\sqrt{\left\langle q^{2}\right\rangle-\langle q\rangle^{2}} \\
& \Delta \mathrm{p}=\sqrt{\left\langle\mathrm{p}^{2}\right\rangle-\langle\mathrm{p}\rangle^{2}}
\end{aligned}
$$

For $\mathrm{q}=\frac{1}{\sqrt{2 \omega}}\left(\mathrm{a}^{\dagger}+\mathrm{a}\right)$

$$
\begin{aligned}
\langle\mathrm{q}\rangle & =\langle\alpha| \mathrm{q}|\alpha\rangle \\
& =\langle\alpha| \frac{1}{\sqrt{2 \omega}}\left(\mathrm{a}^{\dagger}+\mathrm{a}\right)|\alpha\rangle \\
& =\frac{1}{\sqrt{2 \omega}}\left\{\langle\alpha| \mathrm{a}^{\dagger}|\alpha\rangle+\langle\alpha| \mathrm{a}|\alpha\rangle\right\} \\
& =\frac{1}{\sqrt{2 \omega}}\left\{\alpha^{*}+\alpha\right\} \quad \text { Since } \mathrm{a}|\alpha\rangle=\alpha|\alpha\rangle \text { and }\langle\alpha| \mathrm{a}^{\dagger}=\langle\alpha| \alpha^{*}
\end{aligned}
$$

Since $\alpha=\alpha_{r}+i \alpha_{i}$ then $\alpha^{*}+\alpha=2 \alpha_{r}$ hence

$$
\langle q\rangle=\frac{2 \alpha_{r}}{\sqrt{2 \omega}}=\sqrt{\frac{2}{\omega}} \alpha_{r}
$$

$$
\left\langle\mathrm{q}^{2}\right\rangle=\langle\alpha| \mathrm{q}^{2}|\alpha\rangle
$$

$$
\left.=\langle\alpha| \frac{1}{2 \omega}\left(a^{\dagger}+a\right)^{2} \right\rvert\, \text { केसीद }
$$

$$
\left.=\frac{1}{2 \omega}\left\{\left(\rho \alpha a^{2}|\alpha\rangle+\left\langle\alpha a^{2} \mid \alpha\right\rangle+\langle\alpha|(a a\rangle\right) \alpha a\right)|\alpha\rangle\right\}
$$

$$
\left.\frac{1-}{2}\left\{\left(\alpha\left|a^{+2}\right| \alpha\right\rangle+\langle\alpha| a^{2}|\alpha\rangle+\langle\alpha|\left(2 a^{\dagger} \mathrm{a}+1\right) \mid \alpha\right)\right\}
$$

$$
\stackrel{1}{2 \omega}\left\{\alpha^{* 2}+\alpha^{2}+2 \alpha^{*} \alpha+1\right\}
$$

$$
Q \frac{1}{2 \omega}\left\{\left(\alpha^{2}+\alpha\right)^{2}+\overrightarrow{+1}\right\} \text { वो वन्तु विशकत: } 0
$$

$$
=\frac{1}{2 \phi}\left\{4 \alpha_{\mathrm{r}}^{2}+1\right\}=\frac{2 \alpha_{n}^{2}}{\omega}+\frac{1}{2 \omega}
$$

hence variance of q

$$
\begin{aligned}
& \text { कि/बेद विशकी } \\
& (\Delta \mathrm{q})^{2}=\left\langle\mathrm{q}^{2}\right\rangle-\langle\mathrm{q}\rangle^{2}=\frac{1}{2 \omega}
\end{aligned}
$$

Similarly we can calculate

$$
\langle\mathrm{p}\rangle=\sqrt{2 \omega} \alpha_{\mathrm{i}},\left\langle\mathrm{p}^{2}\right\rangle=2 \omega \alpha_{\mathrm{i}}^{2}+\frac{\omega}{2} \text {.and }
$$

variance of $\mathrm{p} ;(\Delta \mathrm{p})^{2}=\left\langle\mathrm{p}^{2}\right\rangle-\langle\mathrm{p}\rangle^{2}=\frac{\omega}{2}$.Thus,

$$
(\Delta \mathrm{q})^{2}(\Delta \mathrm{p})^{2}=\frac{1}{4} \text { So, }(\Delta \mathrm{q})(\Delta \mathrm{p})=\frac{1}{2}
$$

This is the minimum value allowed by Heisenberg uncertainty principle. Hence, Coherent state is a minimum uncertainty state. It is the most classical state.

(5) Poisson distribution of Photons:

Let operator Ω has several eigen values ω_{n} corresponding to eigen states $\left|\omega_{\mathrm{n}}\right\rangle$

$$
\Omega\left|\omega_{n}\right\rangle=\omega_{n}\left|\omega_{n}\right\rangle
$$

If we measure the physical values of operator Ω, we get the variables ω_{n}, different values corresponds to $\mathrm{n}=0,1,2,3, \ldots \ldots \ldots$
Suppose we have a mixed state,
$|\psi\rangle=c_{0}\left|\omega_{0}\right\rangle+c_{1}\left|\omega_{1}\right\rangle+c_{2}\left|\omega_{2}\right\rangle+c_{3}\left|\omega_{3}\right\rangle+\ldots \ldots$.
Then $|\psi\rangle$ is an arbitrary or mixed state can be expanded linearly in terms of a complete set of orthonormal states ω_{n}. Probability that the measurement of ω_{0} is $\left|\mathrm{c}_{0}\right|^{2}, \omega_{1}$ is $\left|\mathrm{c}_{1}\right|^{2}$ and so on

Coherent state is $|\alpha\rangle=\mathrm{e}$
$\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle$ so it can be written

Now,

$$
\begin{gathered}
\mathrm{P}(0)=\left|\mathrm{c}_{0}\right|^{2}=|\langle 0 \mid \alpha\rangle|^{2}=\mathrm{e}^{-|\alpha|^{2}} \\
\mathrm{P}(1)=\left|\mathrm{c}_{1}\right|^{2}=|\langle 1 \mid \alpha\rangle|^{2}=\mathrm{e}^{-|\alpha|^{2}} \frac{|\alpha|^{2}}{1!} \\
\mathrm{P}(2)=\left|\mathrm{c}_{2}\right|^{2}=|\langle 2 \mid \alpha\rangle|^{2}=\mathrm{e}^{-|\alpha|^{2}} \frac{|\alpha|^{4}}{2!}
\end{gathered}
$$

$$
\mathrm{P}(\mathrm{n})=\left|\mathrm{c}_{\mathrm{n}}\right|^{2}=|\langle\mathrm{n} \mid \alpha\rangle|^{2}=\mathrm{e}^{-|\alpha|^{2}} \frac{|\alpha|^{2 \mathrm{n}}}{\mathrm{n}!}
$$

Hence

$$
\mathrm{P}(\mathrm{n})=\mathrm{e}^{-|\alpha|^{2}} \frac{\alpha^{2 \mathrm{n}}}{\mathrm{n}!}
$$

$$
\langle\alpha| \mathrm{a}^{+} \mathrm{a}|\alpha\rangle=\alpha^{*} \alpha=|\alpha|^{2}=\overline{\mathrm{n}}=\text { average number of photons. }
$$

Thus the expectation value of number of photons is the average number of photons in the coherent state.

$$
\mathrm{P}(\mathrm{n})=\mathrm{e}^{-\overline{\mathrm{n}}} \frac{(\overline{\mathrm{n}})^{\mathrm{n}}}{\mathrm{n}!},
$$

which is Poisson distribution for number of photons in the coherent state

$$
\langle\alpha| a^{+2} a^{2}|\alpha\rangle=\alpha^{* 2} \alpha^{2}=|\alpha|^{4}=\bar{n}^{2}
$$

The variance of photon in coherent stater पुसीद

$$
=|\alpha|^{2}=\overline{\mathrm{n}}
$$

Thus for Poisson distributiongoth variance and mean are equat.
For large values of n Poisson disffibation approaches eqagssian distribution.

Note:

$$
\mathrm{P}(\mathrm{n})=\mathrm{e}^{-\overline{\mathrm{n}}} \frac{(\overline{\mathrm{n}})^{\mathrm{n}}}{\mathrm{n}!}, \mathrm{P}(\mathrm{n}+1)=\mathrm{e}^{-\overline{\mathrm{n}}} \frac{(\overline{\mathrm{n}})^{\mathrm{n}+1}}{(\mathrm{n}+1)!}
$$

Therefore

$$
\frac{\mathrm{P}(\mathrm{n}+1)}{\mathrm{P}(\mathrm{n})}=\frac{\overline{\mathrm{n}}}{\mathrm{n}+1}
$$

Case (1) If \bar{n} is an integer

(i) For $\mathrm{n}=\overline{\mathrm{n}}$

$$
\frac{\mathrm{P}(\overline{\mathrm{n}}+1)}{\mathrm{P}(\overline{\mathrm{n}})}=\frac{\overline{\mathrm{n}}}{\overline{\mathrm{n}}+1}
$$

$$
(\overline{\mathrm{n}}+1) \mathrm{P}(\overline{\mathrm{n}}+1)=\overline{\mathrm{n}} \mathrm{P}(\overline{\mathrm{n}})
$$

$$
\mathrm{P}(\overline{\mathrm{n}}+1)=\frac{\overline{\mathrm{n}} \mathrm{P}(\overline{\mathrm{n}})}{(\overline{\mathrm{n}}+1)}
$$

$$
\text { Since } \frac{\overline{\mathrm{n}}}{(\overline{\mathrm{n}}+1)}<1
$$

Therefore $\mathrm{P}(\overline{\mathrm{n}}+1)<\mathrm{P}(\overline{\mathrm{n}})$ If $\overline{\mathrm{n}}$ is an integer
(ii) For $\mathrm{n}=\overline{\mathrm{n}}-1$

$$
\begin{aligned}
& \frac{\mathrm{P}(\overline{\mathrm{n}})}{\mathrm{P}(\overline{\mathrm{n}}-1)}=\frac{\mathrm{e}^{-\overline{\mathrm{n}}} \overline{\mathrm{n}}^{\mathrm{n}}}{\overline{\mathrm{n}}!} \frac{(\overline{\mathrm{n}}-1)}{\mathrm{e}^{-\overline{\mathrm{n}}} \overline{\mathrm{n}}^{\mathrm{n}-1}}=1 \\
& \mathrm{P}(\overline{\mathrm{n}}+1)=\mathrm{P}(\overline{\mathrm{n}})
\end{aligned}
$$

(iii) For $\mathrm{n}=\overline{\mathrm{n}}-2$

$$
\begin{aligned}
& \frac{\mathrm{P}(\overline{\mathrm{n}}-1)}{\mathrm{P}(\overline{\mathrm{n}}-2)}=\frac{\overline{\mathrm{n}}}{\overline{\mathrm{n}}-1}>1 \\
& \mathrm{P}(\overline{\mathrm{n}}-1)>\mathrm{P}(\overline{\mathrm{n}}-2)
\end{aligned}
$$

Conclusion: If \bar{n} is an integer out of $P(0), P(1), \ldots$ etc. $P(\overline{\mathrm{n}})$. $P(\overline{\mathrm{~g}})$ is the highest.

Case (2) If \bar{n} is not an integer

For $\mathrm{n}=\overline{\mathrm{n}}+\varepsilon ; \varepsilon$ is a fraction <1. पस्तिद
(i) For $\mathrm{n}=\overline{\mathrm{n}}_{0}$
(ii) For $\mathrm{n}=\overline{\mathrm{n}}_{0}$

$$
\begin{aligned}
& \frac{\mathrm{P}\left(\mathrm{n}_{0}+1\right)}{\mathrm{P}\left(\mathrm{n}_{0}\right)=\mathrm{n}_{0}+\varepsilon}<1 \\
& \mathrm{P}\left(\mathrm{n}_{0}+1 \mathrm{~h}+\mathrm{P}\left(\mathrm{n}_{0}\right)\right.
\end{aligned}
$$

$$
\frac{\mathrm{P}\left(\mathrm{n}_{0}\right)}{\mathrm{P}\left(\mathrm{n}_{0}-\mathrm{l}\right)}=\frac{\mathrm{n}_{0}+\varepsilon}{\mathrm{n}_{0}}=\frac{\overline{\mathrm{n}}}{\mathrm{n}_{0}}>0
$$

$$
\mathrm{P}\left(\mathrm{n}_{0}-1\right)\left\langle\mathrm{P}\left(\mathrm{c}_{9}\right)\right.
$$

(6) Show that a $\left.{ }^{\dagger}|\alpha\rangle=\frac{\partial}{\partial \alpha}|\alpha\rangle+\alpha \sqrt{\partial r}\right\}$

$$
\begin{gathered}
|\alpha\rangle=\mathrm{e}^{-\frac{|\alpha|^{2}}{2}} \sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle \\
\mathrm{e}^{\frac{|\alpha|^{2}}{2}}|\alpha\rangle=\sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{n!}}|\mathrm{n}\rangle \\
\frac{\partial}{\partial \alpha}\left(\mathrm{e}^{\frac{|\alpha|^{2}}{2}}|\alpha\rangle\right) \\
=\frac{\partial}{\partial \alpha}\left(\sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{n!}}|\mathrm{n}\rangle\right) \\
\\
=\sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{n} \alpha^{\mathrm{n}-1}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle \\
\\
=\sum_{\mathrm{n}=1}^{\infty} \frac{\alpha^{\mathrm{n}-1}}{\sqrt{(\mathrm{n}-1)!}} \sqrt{\mathrm{n}}|\mathrm{n}\rangle
\end{gathered}
$$

Replace n by $\mathrm{n}+1$

$$
\begin{aligned}
\frac{\partial}{\partial \alpha}\left(e^{\frac{|\alpha|^{2}}{2}}|\alpha\rangle\right) & =\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{(n)!}} \sqrt{n+1}|n+1\rangle \\
& =\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{(n)!}} a^{+}|n\rangle \\
& =a^{+} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{(n)!}}|n\rangle \\
& =a^{+}\left(e^{\frac{|\alpha|^{2}}{2}}|\alpha\rangle\right) \\
& =e^{\frac{|\alpha|^{2}}{2}} a^{+}|\alpha\rangle \\
a^{+}|\alpha\rangle \quad & e^{-\frac{|\alpha|^{2}}{2}} \frac{\partial}{\partial \alpha}\left(e^{\frac{|\alpha|^{2}}{2}}|\alpha\rangle\right) \\
& =\frac{\partial}{\partial \alpha}(|\alpha\rangle)+\alpha^{*}|\alpha\rangle
\end{aligned}
$$

(7) Show that $e^{i \theta a^{\dagger}}{ }^{\dagger}|\alpha\rangle=\left|\alpha e^{i \theta}\right\rangle$

Proof:

If $\theta=\frac{\pi}{2}$ then

$$
\mathrm{e}^{\mathrm{i} \theta \mathrm{~N}}|\alpha\rangle=\mathrm{e}^{\mathrm{i} \frac{\pi}{2} \mathrm{~N}}|\alpha\rangle=\left|\alpha \mathrm{e}^{\mathrm{i} \frac{\pi}{2}}\right\rangle=|\mathrm{i} \alpha\rangle
$$

Prove the following:

(1) $\langle\alpha \mid 2 \alpha\rangle=\mathrm{e}^{-\frac{1}{2}|\alpha|^{2}}$
(2) $(\langle\alpha|+\langle-\alpha|) a(|\alpha\rangle+|-\alpha\rangle)=0$
(3) $\langle\alpha|\left[\mathrm{a}^{2}, \mathrm{a}^{+2}\right]|\alpha\rangle=4|\alpha|^{2}+2$
(4) $\left[X_{1}, X_{2}\right]=\frac{i}{2}$, where hermitian operators $X_{1,2}$ are defined by $a=X_{1}+i X_{2}$
(5) $(\langle 2 \alpha|+\langle\alpha|)(|-2 \alpha\rangle-|-\alpha\rangle)=0$
(6) $\int d^{2} \alpha|\alpha\rangle\langle-\alpha|=\pi \sum_{\mathrm{n} 0}^{\infty}(-1)^{\mathrm{n}}|\mathrm{n}\rangle\langle\mathrm{n}|$

Coherent State as a Gaussian Wave Packet

Let $|X\rangle$ is the eigenstate when the positionngftherparticle in precisely stated by X then

$$
\mathrm{X}_{\mathrm{op}}|\mathrm{X}\rangle=\chi|\mathrm{X}\rangle
$$

Where X_{op} is position/operator
(i) Orthonormality condition: $\left\langle\mathrm{X}^{\prime} \mid \mathrm{X}\right\rangle=\delta\left(\mathrm{X}-\mathrm{X}^{\prime}\right)$
(ii) Completeness relation: $\int \mathrm{dX}|\mathrm{X}\rangle\langle\mathrm{X}|=1$
(iii) Mean position- given by the expectation value

$$
\begin{aligned}
\langle\psi| X_{\mathrm{op}}|\psi\rangle & =\langle\psi| X_{\mathrm{op}} \int \mathrm{dX}|\mathrm{X}\rangle\langle X \mid \psi\rangle / \overline{\mathrm{C}} \mathrm{G} \\
& =\int \mathrm{dX}\langle\psi| \mathrm{X}_{\mathrm{op}}|\mathrm{X}\rangle\langle\mathrm{X} \mid \psi\rangle \\
& =\int \mathrm{d} X\langle\psi| \chi|X\rangle\langle X \mid \psi\rangle \\
& =\int \mathrm{d} X \chi\langle\psi \mid X\rangle\langle X \mid \psi\rangle \\
& =\int \mathrm{d} X \chi \psi^{*}(X) \psi(X)
\end{aligned}
$$

which gives position probability density $\psi^{*}(\mathrm{X}) \psi(\mathrm{X})$. The Configuration space function for the coherent state $|\alpha\rangle$, defined by $\left\langle\mathrm{q}^{\prime} \mid \alpha\right\rangle$,

If $\left|q^{\prime}\right\rangle$ is the eigen state, then $q\left|q^{\prime}\right\rangle=q^{\prime}\left|q^{\prime}\right\rangle$
$\mathrm{q}=$ coordinate operator, it is quantum number and $\mathrm{q}^{\prime}=$ eigen value, it is c-number We know that $\mathrm{a}|0\rangle=0$. For single mode Harmonic Oscillator $\mathrm{a}=\frac{1}{\sqrt{2 \omega}}(\omega \mathrm{q}+\mathrm{ip})$

$$
\begin{aligned}
& \left\langle q^{\prime}\right| \frac{1}{\sqrt{2 \omega}}(\omega q+i p)|0\rangle=0 \\
& \left\langle q^{\prime}\right|(\omega q+i p)|0\rangle=0 \\
& \omega q^{\prime}\left\langle q^{\prime} \mid 0\right\rangle+i p\left\langle q^{\prime} \mid 0\right\rangle=0
\end{aligned}
$$

Since $p=-i \frac{\partial}{\partial q^{\prime}}$
$\omega \mathrm{q}^{\prime}\left\langle\mathrm{q}^{\prime} \mid 0\right\rangle+\mathrm{i}\left(-\mathrm{i} \frac{\partial}{\partial \mathrm{q}^{\prime}}\right)\left\langle\mathrm{q}^{\prime} \mid 0\right\rangle=0$
$\omega q^{\prime}\left\langle q^{\prime} \mid 0\right\rangle+\frac{\partial}{\partial q^{\prime}}\left\langle q^{\prime} \mid 0\right\rangle=0$
$\frac{\partial}{\partial q^{\prime}}\left\langle q^{\prime} \mid 0\right\rangle=-\omega q^{\prime}\left\langle q^{\prime} \mid 0\right\rangle$,
which is similar to the differential guation $\frac{\partial \mathrm{y}}{\partial \mathrm{x}}$
$y=A e^{-\frac{1}{2} a x^{2}}$
So $\left\langle\mathrm{q}^{\prime} \mid 0\right\rangle=A \mathrm{e}^{-\frac{1}{2} \omega \mathrm{q}^{\prime} 2} ;$ A is constant of integration.
Using normalization condition 3 नो भदरः कतयो वन्तु विशकतः

$$
|A|^{2} \sqrt{\frac{\pi}{\omega}}=1 \text { which implies } \mathrm{A}=\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}}, \text { hence }
$$

$$
\left\langle\mathrm{q}^{\prime} \mid 0\right\rangle=\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{-\frac{1}{2} \omega \mathrm{q}^{\prime} 2}
$$

Coherent state is

it can be written as

$$
|\alpha\rangle=\mathrm{e}^{-\frac{|\alpha|^{2}}{2}} \sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle,
$$

$$
|\alpha\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right) \exp \left(\alpha \mathrm{a}^{\dagger}\right)|0\rangle
$$

since

$$
\begin{aligned}
\mathrm{e}^{\alpha \mathrm{a}}|0\rangle= & \left(1+\frac{\alpha \mathrm{a}}{1!}+\frac{\alpha^{2} \mathrm{a}^{2}}{2!}-\ldots \ldots \ldots .\right)|0\rangle \\
& =|0\rangle+\frac{\alpha \mathrm{a}}{1!}|0\rangle+\frac{\alpha^{2} \mathrm{a}^{2}}{2!}|0\rangle-\ldots \ldots \ldots \\
& =|0\rangle \quad \text { since }(\mathrm{a}|0\rangle=0)
\end{aligned}
$$

Hence $|\alpha\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right) \exp \left(\alpha \mathrm{a}^{\dagger}\right)|0\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right) \exp \left(\alpha \mathrm{a}^{\dagger}\right) \exp (\alpha \mathrm{a})|0\rangle$
Use BCH Identity

$$
\begin{aligned}
& e^{A} e^{B}=e^{A+B} e^{\frac{1}{[A, B]}} \\
A= & \exp \left(\alpha a^{\dagger}\right) \text { and } B=\exp (\alpha a)
\end{aligned}
$$

Hence

therefore

$$
\left\langle\mathrm{q}^{\prime} \mid \alpha\right\rangle=\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{\left.-\left.\frac{1}{2}| | \alpha\right|^{2}+\alpha^{2}\right)} \mathrm{e}^{\alpha \sqrt{2 \omega q^{\prime}}} \mathrm{e}^{-\frac{1}{2} \omega \mathrm{q}^{\prime} 2}
$$

$$
\begin{aligned}
\left\langle\mathrm{q}^{\prime} \mid \alpha\right\rangle & =\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \mathrm{e}^{\left.-\left.\frac{1}{2}| | \alpha\right|^{2}+\alpha^{2}\right)} \mathrm{e}^{\alpha \sqrt{2 \omega q^{\prime}} \mathrm{e}^{-\frac{1}{2} \omega q^{\prime} 2}} \\
& =\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \exp \left[-\frac{1}{2}\left(\left|\alpha_{\mathrm{r}}\right|^{2}+\left|\alpha_{\mathrm{i}}\right|^{2}+\alpha_{\mathrm{r}}^{2}+\alpha_{\mathrm{i}}^{2}+\alpha_{\mathrm{r}}^{2}-\alpha_{\mathrm{i}}^{2}+2 i \alpha_{\mathrm{r}} \alpha_{\mathrm{i}}\right)+\left(\alpha_{\mathrm{r}}+\alpha_{\mathrm{i}}\right) \sqrt{2 \omega} \mathrm{q}^{\prime}-\frac{1}{2} \omega \mathrm{q}^{\prime 2}\right] \\
& =\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \exp \left[-2 \alpha_{\mathrm{r}}^{2}+2 \alpha_{\mathrm{r}} \sqrt{2 \omega} \mathrm{q}^{\prime}-\omega \mathrm{q}^{\prime 2}+\text { imaginary part }\right] \\
& =\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} \exp \left[-\omega\left(\mathrm{q}^{\prime 2}-2 \sqrt{\frac{2}{\omega}} \alpha_{\mathrm{r}} \mathrm{q}^{\prime}+\frac{2}{\omega} \alpha_{\mathrm{r}}^{2}\right]\right.
\end{aligned}
$$

$$
\text { and quadrature distribution is } \quad\left|\left\langle\mathrm{q}^{\prime} \mid \alpha\right\rangle\right|^{2}=\left(\frac{\omega}{\pi}\right)^{\frac{1}{2}} \exp \left[-\omega\left(\mathrm{q}^{\prime}-\sqrt{\frac{2}{\omega}} \alpha_{\mathrm{r}}\right)^{2}\right]
$$

This is Gaussian wave packet which is centereataryc $=\sqrt{\frac{2}{\omega}} \alpha_{r}$. Coherent state can be expressed in terms of Gaussian, pace packet.s

Hermitian Operator X_{1} and X_{2} :

For the physical meaning of the canonical momentum operator p and canonical operator q of the field, we introduce two new hermitian operators ${ }^{2} \mathrm{X}_{1}$ and X_{2} as

$$
\begin{align*}
& \mathrm{X}_{1}=\sqrt{\frac{2 \omega}{\hbar}} \mathrm{q}, \mathrm{X}_{2}=\sqrt{\frac{1}{2 \omega}} \mathrm{p}, \text { in quantum unft } \hbar=1 \text { then } \mathrm{X}_{\mathrm{y}}=\sqrt{2 \omega} \mathrm{q}, \mathrm{X}_{2}=\sqrt{\frac{1}{2 \omega}} \mathrm{p} \\
& \mathrm{X}_{1}=\frac{1}{2}\left(\mathrm{a}+\mathrm{a}^{+}\right), \mathrm{X}_{2}=\frac{1}{2 \mathrm{i}}\left(\mathrm{a}-\mathrm{a}^{+}\right)
\end{align*}
$$

Which gives $\left[X_{1}, X_{2}\right]=\frac{i}{2}$. For single mode radiation vector potential is

$$
\begin{align*}
\overrightarrow{\mathrm{A}} & =\frac{1}{\sqrt{2 \omega \mathrm{~V}}} \varepsilon\left[\mathrm{ae}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}+\mathrm{a}^{+} \mathrm{e}^{-\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}\right] \\
& =\frac{1}{\sqrt{2 \omega \mathrm{~V}}} \varepsilon\left[\left(\mathrm{X}_{1}+\mathrm{i} \mathrm{X}_{2}\right) \mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}+\left(\mathrm{X}_{1}-\mathrm{i} \mathrm{X}_{2}\right) \mathrm{e}^{-\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}\right] \\
& =\frac{1}{\sqrt{2 \omega \mathrm{~V}}} \varepsilon\left[\mathrm{X}_{1}\left(\mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}+\mathrm{e}^{-\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}\right)+\mathrm{iX}_{2}\left(\mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}-\mathrm{e}^{-\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}\right)\right] \tag{2}\\
& =\sqrt{\frac{2}{\omega \mathrm{~V}}} \varepsilon\left[\mathrm{X}_{1} \cos (\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})+\mathrm{X}_{2} \sin (\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})\right]
\end{align*}
$$

Which shows that X_{1} and X_{2} are the amplitude operators of the filed whose phase are orthogonal. Thus X_{1} and X_{2} are called quadrature operators.

Uncertainties in X_{1} and X_{2} for coherent state:

Let $\Delta \mathrm{X}_{1}$ and $\Delta \mathrm{X}_{2}$ be the uncertainty in X_{1} and X_{2} respectively. $\Delta \mathrm{X}_{1}$ and $\Delta \mathrm{X}_{2}$ are square root of the variances of X_{1} and X_{2} are defined as follows:

$$
\begin{aligned}
& \Delta \mathrm{X}_{1}=\sqrt{\left\langle\mathrm{X}_{1}^{2}\right\rangle-\left\langle\mathrm{X}_{1}\right\rangle^{2}} \\
& \Delta \mathrm{X}_{2}=\sqrt{\left\langle\mathrm{X}_{2}^{2}\right\rangle-\left\langle\mathrm{X}_{2}\right\rangle^{2}}
\end{aligned}
$$

For

Since $\alpha=\alpha_{r}+i \alpha_{i}$ then $\alpha^{*}+\alpha=2 \alpha_{r}$ hency

$$
\left\langle\mathrm{X}_{1}^{2}\right\rangle=\langle\alpha| \mathrm{X}_{1}^{2 \sqrt{2}}{ }^{2}
$$

$$
=\langle\alpha| \frac{1}{4}\left(\mathrm{a}^{\dagger}+\mathrm{a}\right)^{2}|\alpha\rangle
$$

$$
=\frac{1}{4}\left\{\langle\alpha| \mathrm{a}^{\dagger 2}|\alpha\rangle+\langle\alpha| \mathrm{a}^{2}|\alpha\rangle+\langle\alpha|\left(\mathrm{aa}^{\dagger}+\mathrm{a}^{\dagger} \mathrm{a}\right)|\alpha\rangle\right\}
$$

$$
=\frac{1}{4}\left\{\langle\alpha| \mathrm{a}^{\dagger 2}|\alpha\rangle+\langle\alpha| \mathrm{a}^{2}|\alpha\rangle+\langle\alpha|\left(2 \mathrm{a}^{\dagger} \mathrm{a}+1\right)|\alpha\rangle\right\}
$$

$$
=\frac{1}{4}\left\{\alpha^{* 2}+\alpha^{2}+2 \alpha^{*} \alpha+1\right\}
$$

$$
=\frac{1}{4}\left\{\left(\alpha^{*}+\alpha\right)^{2}+1\right\}
$$

$$
=\frac{1}{4}\left\{4 \alpha_{\mathrm{r}}^{2}+1\right\}=\alpha_{\mathrm{r}}^{2}+\frac{1}{4}
$$

hence variance of X_{1}

$$
\left(\Delta \mathrm{X}_{1}\right)^{2}=\left\langle\mathrm{X}_{1}^{2}\right\rangle-\left\langle\mathrm{X}_{1}\right\rangle^{2}=\frac{1}{4}
$$

Similarly we can calculate

$$
\left\langle\mathrm{X}_{2}\right\rangle=\alpha_{\mathrm{i}},\left\langle\mathrm{X}_{2}^{2}\right\rangle=\alpha_{\mathrm{i}}^{2}+\frac{1}{4} \text {.and }
$$

variance of $X_{2} ;\left(\Delta X_{2}\right)^{2}=\left\langle X_{2}{ }^{2}\right\rangle-\left\langle X_{2}\right\rangle^{2}=\frac{1}{4}$.Thus,

$$
\left(\Delta \mathrm{X}_{1}\right)^{2}\left(\Delta \mathrm{X}_{2}\right)^{2}=\frac{1}{16} \text { So, }\left(\Delta \mathrm{X}_{1}\right)\left(\Delta \mathrm{X}_{2}\right)=\frac{1}{4}
$$

This is the minimum value allowed by Heisenberg uncertainty principle. Hence, Coherent state is a minimum uncertainty state.

