
C - Storage Classes 
A storage class defines the scope (visibility) and life-time of variables and/or functions 
within a C Program. They precede the type that they modify. We have four different 
storage classes in a C program − 

 auto 

 register 

 static 

 extern 

The auto Storage Class 

The auto storage class is the default storage class for all local variables. 

{ 

   int mount; 

   auto int month; 

} 

The example above defines two variables with in the same storage class. 'auto' can only 
be used within functions, i.e., local variables. 

The register Storage Class 

The register storage class is used to define local variables that should be stored in a 
register instead of RAM. This means that the variable has a maximum size equal to the 
register size (usually one word) and can't have the unary '&' operator applied to it (as it 
does not have a memory location). 

{ 

   register int  miles; 

} 

The register should only be used for variables that require quick access such as 
counters. It should also be noted that defining 'register' does not mean that the variable 
will be stored in a register. It means that it MIGHT be stored in a register depending on 
hardware and implementation restrictions. 

The static Storage Class 

The static storage class instructs the compiler to keep a local variable in existence 
during the life-time of the program instead of creating and destroying it each time it 
comes into and goes out of scope. Therefore, making local variables static allows them 
to maintain their values between function calls. 

The static modifier may also be applied to global variables. When this is done, it causes 
that variable's scope to be restricted to the file in which it is declared. 

In C programming, when static is used on a global variable, it causes only one copy of 
that member to be shared by all the objects of its class. 

#include <stdio.h> 

  

/* function declaration */ 

void func(void); 

  

static int count = 5; /* global variable */ 



  

main() { 

 

   while(count--) { 

      func(); 

   } 

  

   return 0; 

} 

 

/* function definition */ 

void func( void ) { 

 

   static int i = 5; /* local static variable */ 

   i++; 

 

   printf("i is %d and count is %d\n", i, count); 

} 

When the above code is compiled and executed, it produces the following result − 

i is 6 and count is 4 

i is 7 and count is 3 

i is 8 and count is 2 

i is 9 and count is 1 

i is 10 and count is 0 

The extern Storage Class 

The extern storage class is used to give a reference of a global variable that is visible to 
ALL the program files. When you use 'extern', the variable cannot be initialized however, 
it points the variable name at a storage location that has been previously defined. 

When you have multiple files and you define a global variable or function, which will also 
be used in other files, then extern will be used in another file to provide the reference of 
defined variable or function. Just for understanding, extern is used to declare a global 
variable or function in another file. 

The extern modifier is most commonly used when there are two or more files sharing the 
same global variables or functions as explained below. 

First File: main.c 

#include <stdio.h> 

  

int count ; 

extern void write_extern(); 

  

main() { 

   count = 5; 

   write_extern(); 

} 

Second File: support.c 

#include <stdio.h> 

  

extern int count; 

  



void write_extern(void) { 

   printf("count is %d\n", count); 

} 

 


