
Function to insert node in the end of the List, 

struct Node *addAfter(struct Node *last, int data, int item) 

{ 

    if (last == NULL) 

       return NULL; 

     struct Node *temp, *p; 

    p = last -> next; 

     // Searching the item. 

    do 

    { 

        if (p ->data == item) 

        { 

            temp = (struct Node *)malloc(sizeof(struct Node)); 

             // Assigning the data. 

            temp -> data = data; 

             // Adjusting the links. 

            temp -> next = p -> next; 

             // Adding newly allocated node after p. 

            p -> next = temp; 

             // Checking for the last node. 

            if (p == last) 

                last = temp; 

             return last; 

        } 

        p = p -> next; 

    } while (p != last -> next); 

  

    cout << item << " not present in the list." << endl; 

    return last; 

} 

 



Module-2: 
Lecture-11 

 Memory Allocation-  

Whenever a new node is created, memory is allocated by the system. This memory is 

taken from list of those memory locations which are free i.e. not allocated. This list is 

called AVAIL List. Similarly, whenever a node is deleted, the deleted space becomes 

reusable and is added to the list of unused space i.e. to AVAIL List. This unused space 

can be used in future for memory allocation.  

Memory allocation is of two types- 

1. Static Memory Allocation 

2. Dynamic Memory Allocation  

 

1. Static Memory Allocation: 

When memory is allocated during compilation time, it is called ‘Static Memory 

Allocation’. This memory is fixed and cannot be increased or decreased after 

allocation. If more memory is allocated than requirement, then memory is wasted. If 

less memory is allocated than requirement, then program will not run successfully. 

So exact memory requirements must be known in advance.  

2. Dynamic Memory Allocation: 

When memory is allocated during run/execution time, it is called ‘Dynamic Memory 

Allocation’. This memory is not fixed and is allocated according to our requirements. 

Thus in it there is no wastage of memory. So there is no need to know exact memory 

requirements in advance.  

Garbage Collection- 

Whenever a node is deleted, some memory space becomes reusable. This memory 

space should be available for future use. One way to do this is to immediately insert the 

free space into availability list. But this method may be time consuming for the operating 

system. So another method is used which is called ‘Garbage Collection’. This method is 

described below: In this method the OS collects the deleted space time to time onto the 

availability list. This process happens in two steps. In first step, the OS goes through all 

the lists and tags all those cells which are currently being used. In the second step, the 



OS goes through all the lists again and collects untagged space and adds this collected 

space to availability list. The garbage collection may occur when small amount of free 

space is left in the system or no free space is left in the system or when CPU is idle and 

has time to do the garbage collection.  

Compaction 

One preferable solution to garbage collection is compaction. 

The process of moving all marked nodes to one end of memory and all available 

memory to other end is called compaction. Algorithm which performs compaction is 

called compacting algorithm. 



Lecture-12 

Infix to Postfix Conversion  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

#include<stdio.h> 
char stack[20]; 
int top = -1; 
void push(char x) 
{ 
    stack[++top] = x; 
} 
  
char pop() 
{ 
    if(top == -1) 
        return -1; 
    else 
        return stack[top--]; 
} 
  
int priority(char x) 
{ 
    if(x == '(') 
        return 0; 
    if(x == '+' || x == '-') 
        return 1; 
    if(x == '*' || x == '/') 
        return 2; 
} 
  
main() 
{ 
    char exp[20]; 
    char *e, x; 
    printf("Enter the expression :: "); 
    scanf("%s",exp); 
    e = exp; 
    while(*e != '\0') 
    { 
        if(isalnum(*e)) 
            printf("%c",*e); 
        else if(*e == '(') 
            push(*e); 
        else if(*e == ')') 
        { 



42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 

            while((x = pop()) != '(') 
                printf("%c", x); 
        } 
        else 
        { 
            while(priority(stack[top]) >= priority(*e)) 
                printf("%c",pop()); 
            push(*e); 
        } 
        e++; 
    } 
    while(top != -1) 
    { 
        printf("%c",pop()); 
    } 
} 

  

OUTPUT: 

Enter the expression :: a+b*c 
abc*+ 
 
Enter the expression :: (a+b)*c+(d-a) 
ab+c*da-+ 

 



Evaluate POSTFIX Expression Using Stack 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

#include<stdio.h> 

int stack[20]; 

int top = -1; 

 void push(int x) 

{ 

        stack[++top] = x; 

} 

  

int pop() 

{ 

        return stack[top--]; 

} 

  

int main() 

{ 

        char exp[20]; 

        char *e; 

        int n1,n2,n3,num; 

        printf("Enter the expression :: "); 

        scanf("%s",exp); 

        e = exp; 

        while(*e != '\0') 

        { 

                if(isdigit(*e)) 



25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

                { 

                        num = *e - 48; 

                        push(num); 

                } 

                else 

                { 

                        n1 = pop(); 

                        n2 = pop(); 

                        switch(*e) 

                        { 

                                case '+': 

                                { 

                                        n3 = n1 + n2; 

                    break; 

                                } 

                                case '-': 

                                { 

                                        n3 = n2 - n1; 

                                        break; 

                                } 

                                case '*': 

                                { 

                                        n3 = n1 * n2; 

                                        break; 

                                } 



50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

                                case '/': 

                                { 

                                        n3 = n2 / n1; 

                                        break; 

                                } 

                        } 

                        push(n3); 

                } 

                e++; 

        } 

        printf("\nThe result of expression %s  =  %d\n\n",exp,pop()); 

        return 0; 

  

} 

Output: 

Enter the expression :: 245+* 
 

The result of expression 245+*  =  18 



Lecture-13 

Binary Tree 

A binary tree consists of a finite set of nodes that is either empty, or consists of one 

specially designated node called the root of the binary tree, and the elements of two 

disjoint binary trees called the left subtree and right subtree of the root. 

Note that the definition above is recursive: we have defined a binary tree in terms of 

binary trees. This is appropriate since recursion is an innate characteristic of tree 

structures. 

Diagram 1: A binary tree 

 

Binary Tree Terminology 

Tree terminology is generally derived from the terminology of family trees (specifically, 

the type of family tree called a lineal chart). 

 Each root is said to be the parent of the roots of its subtrees. 

 Two nodes with the same parent are said to be siblings; they are the children of 

their parent. 

 The root node has no parent. 

 A great deal of tree processing takes advantage of the relationship between a 

parent and its children, and we commonly say a directed edge (or simply 

an edge) extends from a parent to its children. Thus edges connect a root with 

the roots of each subtree. An undirected edge extends in both directions between 

a parent and a child. 



 Grandparent and grandchild relations can be defined in a similar manner; we 

could also extend this terminology further if we wished (designating nodes as 

cousins, as an uncle or aunt, etc.). 

Other Tree Terms 

 The number of subtrees of a node is called the degree of the node. In a binary 

tree, all nodes have degree 0, 1, or 2. 

 A node of degree zero is called a terminal node or leaf node. 

 A non-leaf node is often called a branch node. 

 The degree of a tree is the maximum degree of a node in the tree. A binary tree 

is degree 2. 

 A directed path from node n1 to nk is defined as a sequence of nodes n1, n2, 

..., nk such that ni is the parent of ni+1 for 1 <= i < k. An undirected path is a 

similar sequence of undirected edges. The length of this path is the number of 

edges on the path, namely k – 1 (i.e., the number of nodes – 1). There is a path 

of length zero from every node to itself. Notice that in a binary tree there is 

exactly one path from the root to each node. 

 The level or depth of a node with respect to a tree is defined recursively: the level 

of the root is zero; and the level of any other node is one higher than that of its 

parent. Or to put it another way, the level or depth of a node ni is the length of the 

unique path from the root to ni. 

 The height of ni is the length of the longest path from ni to a leaf. Thus all leaves 

in the tree are at height 0. 

 The height of a tree is equal to the height of the root. The depth of a tree is equal 

to the level or depth of the deepest leaf; this is always equal to the height of the 

tree. 

 If there is a directed path from n1 to n2, then n1 is an ancestor of n2 and n2 is a 

descendant of n1. 



Lecture-14 

Special Forms of Binary Trees 

There are a few special forms of binary tree worth mentioning. 

If every non-leaf node in a binary tree has nonempty left and right subtrees, the tree is 

termed a strictly binary tree. Or, to put it another way, all of the nodes in a strictly binary 

tree are of degree zero or two, never degree one. A strictly binary tree with N leaves 

always contains 2N – 1 nodes. 

Some texts call this a "full" binary tree. 

A complete binary tree of depth d is the strictly binary tree all of whose leaves are at 

level d. 

The total number of nodes in a complete binary tree of depth d equals 2d+1 – 1. Since all 

leaves in such a tree are at level d, the tree contains 2d leaves and, therefore, 2d - 1 

internal nodes. 

Diagram 2: A complete binary tree 

 

A binary tree of depth d is an almost complete binary tree if: 

 Each leaf in the tree is either at level d or at level d – 1. 

 For any node nd in the tree with a right descendant at level d, all the left 

descendants of nd that are leaves are also at level d. 

Diagram 3: An almost complete binary tree 



 

An almost complete strictly binary tree with N leaves has 2N – 1 nodes (as does any 

other strictly binary tree). An almost complete binary tree with N leaves that is not 

strictly binary has 2N nodes. There are two distinct almost complete binary trees 

with N leaves, one of which is strictly binary and one of which is not. 

There is only a single almost complete binary tree with N nodes. This tree is strictly 

binary if and only if N is odd. 

Representing Binary Trees in Memory 

Array Representation 

For a complete or almost complete binary tree, storing the binary tree as an array may 

be a good choice. 

One way to do this is to store the root of the tree in the first element of the array. Then, 

for each node in the tree that is stored at subscript k, the node's left child can be stored 

at subscript 2k+1 and the right child can be stored at subscript 2k+2. For example, the 

almost complete binary tree shown in Diagram 2 can be stored in an array like so: 

 

However, if this scheme is used to store a binary tree that is not complete or almost 

complete, we can end up with a great deal of wasted space in the array. 



For example, the following binary tree 

 

would be stored using this techinque like so: 

 

Linked Representation 

If a binary tree is not complete or almost complete, a better choice for storing it is to use 

a linked representation similar to the linked list structures covered earlier in the 

semester: 



 

Each tree node has two pointers (usually named left and right). The tree class has a 

pointer to the root node of the tree (labeled root in the diagram above). 

Any pointer in the tree structure that does not point to a node will normally contain the 

value NULL. A linked tree with N nodes will always contain N + 1 null links. 



Lecture-15 

Tree Traversal: 

Traversal is a process to visit all the nodes of a tree and may print their values too. 

Because, all nodes are connected via edges (links) we always start from the root 

(head) node. That is, we cannot randomly access a node in a tree. There are three 

ways which we use to traverse a tree − 

 In-order Traversal 

 Pre-order Traversal 

 Post-order Traversal 

Generally, we traverse a tree to search or locate a given item or key in the tree or to 

print all the values it contains. 

In-order Traversal 

In this traversal method, the left subtree is visited first, then the root and later the right 

sub-tree. We should always remember that every node may represent a subtree itself. 

If a binary tree is traversed in-order, the output will produce sorted key values in an 

ascending order. 

 

We start from A, and following in-order traversal, we move to its left subtree B. B is 

also traversed in-order. The process goes on until all the nodes are visited. The output 

of inorder traversal of this tree will be − 

D → B → E → A → F → C → G 



Algorithm 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Visit root node. 

Step 3 − Recursively traverse right subtree. 

Pre-order Traversal 

In this traversal method, the root node is visited first, then the left subtree and finally 

the right subtree. 

 

We start from A, and following pre-order traversal, we first visit A itself and then move 

to its left subtree B. B is also traversed pre-order. The process goes on until all the 

nodes are visited. The output of pre-order traversal of this tree will be − 

A → B → D → E → C → F → G 

Algorithm 

Until all nodes are traversed − 

Step 1 − Visit root node. 

Step 2 − Recursively traverse left subtree. 

Step 3 − Recursively traverse right subtree. 



Post-order Traversal 

In this traversal method, the root node is visited last, hence the name. First we traverse 

the left subtree, then the right subtree and finally the root node. 

 

We start from A, and following Post-order traversal, we first visit the left subtree B. B is 

also traversed post-order. The process goes on until all the nodes are visited. The 

output of post-order traversal of this tree will be − 

D → E → B → F → G → C → A 

Algorithm 

Until all nodes are traversed − 

Step 1 − Recursively traverse left subtree. 

Step 2 − Recursively traverse right subtree. 

Step 3 − Visit root node. 



Lecture-16 

AVL Trees 

An AVL tree is another balanced binary search tree. Named after their 

inventors, Adelson-Velskii and Landis, they were the first dynamically balanced trees to 

be proposed. Like red-black trees, they are not perfectly balanced, but pairs of sub-

trees differ in height by at most 1, maintaining an O(logn) search time. Addition and 

deletion operations also take O(logn) time. 

Definition of an AVL tree 

An AVL tree is a binary search tree which has the following 

properties: 

1. The sub-trees of every node differ in height by at most one. 

2. Every sub-tree is an AVL tree. 

 

  

Balance requirement 

for an AVL tree: the left 

and right sub-trees 

differ by at most 1 in 

height. 

You need to be careful with this definition: it permits some apparently unbalanced trees! 

For example, here are some trees: 

Tree AVL tree? 

 

Yes 

Examination shows 

that each left sub-tree 

has a height 1 greater 

than each right sub-

tree. 



 

No 

Sub-tree with root 8 has 

height 4 and sub-tree 

with root 18 has height 

2 

Insertion 

As with the red-black tree, insertion is somewhat complex and involves a number of 

cases. Implementations of AVL tree insertion may be found in many textbooks: they rely 

on adding an extra attribute, the balance factor to each node. This factor indicates 

whether the tree is left-heavy (the height of the left sub-tree is 1 greater than the right 

sub-tree), balanced (both sub-trees are the same height) or right-heavy(the height of the 

right sub-tree is 1 greater than the left sub-tree). If the balance would be destroyed by 

an insertion, a rotation is performed to correct the balance. 

 

A new item has been 

added to the left subtree 

of node 1, causing its 

height to become 2 

greater than 2's right sub-

tree (shown in green). A 

right-rotation is performed 

to correct the imbalance. 

 



Lecture-17 

B+-tree 

In B+-tree, each node stores up to d references to children and up to d − 1 keys. Each 

reference is considered “between” two of the node's keys; it references the root of a 

subtree for which all values are between these two keys. 

Here is a fairly small tree using 4 as our value for d. 

 

A B+-tree requires that each leaf be the same distance from the root, as in this picture, 

where searching for any of the 11 values (all listed on the bottom level) will involve 

loading three nodes from the disk (the root block, a second-level block, and a leaf). 

In practice, d will be larger — as large, in fact, as it takes to fill a disk block. Suppose a 

block is 4KB, our keys are 4-byte integers, and each reference is a 6-byte file offset. 

Then we'd choose d to be the largest value so that 4 (d − 1) + 6 d ≤ 4096; solving this 

inequality for d, we end up with d ≤ 410, so we'd use 410 for d. As you can see, d can 

be large. 

A B+-tree maintains the following invariants: 

 Every node has one more references than it has keys. 

 All leaves are at the same distance from the root. 

 For every non-leaf node N with k being the number of keys in N: all keys in the 

first child's subtree are less than N's first key; and all keys in the ith child's 

subtree (2 ≤ i ≤ k) are between the (i − 1)th key of n and the ith key of n. 

 The root has at least two children. 

 Every non-leaf, non-root node has at least floor(d / 2) children. 



 Each leaf contains at least floor(d / 2) keys. 

 Every key from the table appears in a leaf, in left-to-right sorted order. 

In our examples, we'll continue to use 4 for d. Looking at our invariants, this requires 

that each leaf have at least two keys, and each internal node to have at least two 

children (and thus at least one key). 

2. Insertion algorithm 

Descend to the leaf where the key fits. 

1. If the node has an empty space, insert the key/reference pair into the node. 

2. If the node is already full, split it into two nodes, distributing the keys evenly 

between the two nodes. If the node is a leaf, take a copy of the minimum value in 

the second of these two nodes and repeat this insertion algorithm to insert it into 

the parent node. If the node is a non-leaf, exclude the middle value during the 

split and repeat this insertion algorithm to insert this excluded value into the 

parent node. 

Initial: 

 

Insert 20: 

 

Insert 13: 

 



Insert 15: 

 

Insert 10: 

 

Insert 11: 

 

Insert 12: 

 

3. Deletion algorithm 

Descend to the leaf where the key exists. 

1. Remove the required key and associated reference from the node. 

2. If the node still has enough keys and references to satisfy the invariants, stop. 



3. If the node has too few keys to satisfy the invariants, but its next oldest or next 

youngest sibling at the same level has more than necessary, distribute the keys 

between this node and the neighbor. Repair the keys in the level above to 

represent that these nodes now have a different “split point” between them; this 

involves simply changing a key in the levels above, without deletion or insertion. 

4. If the node has too few keys to satisfy the invariant, and the next oldest or next 

youngest sibling is at the minimum for the invariant, then merge the node with its 

sibling; if the node is a non-leaf, we will need to incorporate the “split key” from 

the parent into our merging. In either case, we will need to repeat the removal 

algorithm on the parent node to remove the “split key” that previously separated 

these merged nodes — unless the parent is the root and we are removing the 

final key from the root, in which case the merged node becomes the new root 

(and the tree has become one level shorter than before). 

Initial: 

 

Delete 13: 

 



Delete 15: 

 

Delete 1: 

 

Expression Trees: 

Trees are used in many other ways in the computer science. Compilers and database 

are two major examples in this regard. In case of compilers, when the languages are 

translated into machine language, tree-like structures are used. We have also seen an 

example of expression tree comprising the mathematical expression. Let’s have more 

discussion on the expression trees. We will see what are the benefits of expression 

trees and how can we build an expression tree. Following is the figure of an expression 

tree. 

 

http://lh6.ggpht.com/-xK06FHmentY/UKk0kN-sEXI/AAAAAAAAB3E/nqsLsZSQPVc/s1600-h/clip_image001%255B4%255D.gif


In the above tree, the expression on the left side is a + b * c while on the right side, we 

have d * e + f * g. If you look at the figure, it becomes evident that the inner nodes 

contain operators while leaf nodes have operands. We know that there are two types of 

nodes in the tree i.e. inner nodes and leaf nodes. The leaf nodes are such nodes which 

have left and right subtrees as null. You will find these at the bottom level of the tree. 

The leaf nodes are connected with the inner nodes. So in trees, we have some inner 

nodes and some leaf nodes. 

In the above diagram, all the inner nodes (the nodes which have either left or right child 

or both) have operators. In this case, we have + or * as operators. Whereas leaf nodes 

contain operands only i.e. a, b, c, d, e, f, g. This tree is binary as the operators are 

binary. We have discussed the evaluation of postfix and infix expressions and have 

seen that the binary operators need two operands. In the infix expressions, one operand 

is on the left side of the operator and the other is on the right side. Suppose, if we have 

+ operator, it will be written as 2 + 4. However, in case of multiplication, we will write as 

5*6. We may have unary operators like negation (-) or in Boolean expression we have 

NOT. In this example, there are all the binary operators. Therefore, this tree is a binary 

tree. This is not the Binary Search Tree. In BST, the values on the left side of the nodes 

are smaller and the values on the right side are greater than the node. Therefore, this is 

not a BST. Here we have an expression tree with no sorting process involved. 

This is not necessary that expression tree is always binary tree. Suppose we have a 

unary operator like negation. In this case, we have a node which has (-) in it and there is 

only one leaf node under it. It means just negate that operand. 

Let’s talk about the traversal of the expression tree. The inorder traversal may be 

executed here. 

 

http://lh5.ggpht.com/-eKdXqFyISww/UKk0oO8vTGI/AAAAAAAAB3U/2Tgj0QINS8I/s1600-h/clip_image002%255B4%255D.gif


Lecture-18 

Binary Search Tree (BST) 

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned 

properties − 

 The left sub-tree of a node has a key less than or equal to its parent node's key. 

 The right sub-tree of a node has a key greater than to its parent node's key. 

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right 

sub-tree and can be defined as − 

left_subtree (keys)  ≤  node (key)  ≤  right_subtree (keys) 

Representation 

BST is a collection of nodes arranged in a way where they maintain BST properties. 

Each node has a key and an associated value. While searching, the desired key is 

compared to the keys in BST and if found, the associated value is retrieved. 

Following is a pictorial representation of BST − 

 

We observe that the root node key (27) has all less-valued keys on the left sub-tree 

and the higher valued keys on the right sub-tree. 

Basic Operations 

Following are the basic operations of a tree − 

 Search − Searches an element in a tree. 

 Insert − Inserts an element in a tree. 

 Pre-order Traversal − Traverses a tree in a pre-order manner. 

 In-order Traversal − Traverses a tree in an in-order manner. 

 Post-order Traversal − Traverses a tree in a post-order manner. 

Node 



Define a node having some data, references to its left and right child nodes. 

struct node { 

   int data;    

   struct node *leftChild; 

   struct node *rightChild; 

}; 

Search Operation 

Whenever an element is to be searched, start searching from the root node. Then if the 

data is less than the key value, search for the element in the left subtree. Otherwise, 

search for the element in the right subtree. Follow the same algorithm for each node. 

Algorithm 

struct node* search(int data){ 

   struct node *current = root; 

   printf("Visiting elements: "); 

  

   while(current->data != data){ 

  

      if(current != NULL) { 

         printf("%d ",current->data); 

    

         //go to left tree 

         if(current->data > data){ 

            current = current->leftChild; 

         }  //else go to right tree 

         else {                 

            current = current->rightChild; 

         } 

    

         //not found 



         if(current == NULL){ 

            return NULL; 

         } 

      }    

   } 

    

   return current; 

} 

Insert Operation 

Whenever an element is to be inserted, first locate its proper location. Start searching 

from the root node, then if the data is less than the key value, search for the empty 

location in the left subtree and insert the data. Otherwise, search for the empty location 

in the right subtree and insert the data. 

Algorithm 

void insert(int data) { 

   struct node *tempNode = (struct node*) malloc(sizeof(struct node)); 

   struct node *current; 

   struct node *parent; 

 

   tempNode->data = data; 

   tempNode->leftChild = NULL; 

   tempNode->rightChild = NULL; 

 

   //if tree is empty 

   if(root == NULL) { 

      root = tempNode; 

   } else { 

      current = root; 

      parent = NULL; 



 

      while(1) {                 

         parent = current; 

    

         //go to left of the tree 

         if(data < parent->data) { 

            current = current->leftChild;                 

            //insert to the left 

     

            if(current == NULL) { 

               parent->leftChild = tempNode; 

               return; 

            } 

         }  //go to right of the tree 

         else { 

            current = current->rightChild; 

             

            //insert to the right 

            if(current == NULL) { 

               parent->rightChild = tempNode; 

               return; 

            } 

         } 

      }             

   } 

}         

 

 

 

 

 

 



Module-3: 
Lecture-19 

Graphs Terminology 

A graph consists of: 

 A set, V, of vertices (nodes) 

 A collection, E, of pairs of vertices from V called edges (arcs) 

Edges, also called arcs, are represented by (u, v) and are either: 

Directed if the pairs are ordered (u, v) 

u the origin 

v the destination 

Undirected if the pairs are unordered 

A graph is a pictorial representation of a set of objects where some pairs of objects are 

connected by links. The interconnected objects are represented by points termed 

as vertices, and the links that connect the vertices are called edges. 

Formally, a graph is a pair of sets (V, E), where V is the set of vertices and Eis the set 

of edges, connecting the pairs of vertices. Take a look at the following graph − 

 
In the above graph, 

V = {a, b, c, d, e} 

E = {ab, ac, bd, cd, de} 

Then a graph can be: 

Directed graph (di-graph) if all the edges are directed  

Undirected graph (graph) if all the edges are undirected  

Mixed graph if edges are both directed or undirected 

Illustrate terms on graphs 

End-vertices of an edge are the endpoints of the edge. 

Two vertices are adjacent if they are endpoints of the same edge. 

An edge is incident on a vertex if the vertex is an endpoint of the edge. 

Outgoing edges of a vertex are directed edges that the vertex is the origin.  

Incoming edges of a vertex are directed edges that the vertex is the destination. 

Degree of a vertex, v, denoted deg(v) is the number of incident edges.  

Out-degree, outdeg(v), is the number of outgoing edges.  

In-degree, indeg(v), is the number of incoming edges. 

Parallel edges or multiple edges are edges of the same type and end-vertices  

Self-loop is an edge with the end vertices the same vertex  



Simple graphs have no parallel edges or self-loops 

Properties 

If graph, G, has m edges then  Σv∈G deg(v) = 2m 

If a di-graph, G, has m edges then   

Σv∈G indeg(v) = m = Σv∈G outdeg(v)  

If a simple graph, G, has m edges and n vertices: 

If G is also directed then m ≤ n(n-1)  

If G is also undirected  then m ≤ n(n-1)/2 

So a simple graph with n vertices has O(n2) edges at most 

More Terminology 

Path is a sequence of alternating vetches and edges such that each successive vertex 

is connected by the edge.  Frequently only the vertices are listed especially if there are 

no parallel edges.  

Cycle is a path that starts and end at the same vertex.  

Simple path is a path with distinct vertices.  

Directed path is a path of only directed edges  

Directed cycle is a cycle of only directed edges. 

Sub-graph is a subset of vertices and edges. 

Spanning sub-graph contains all the vertices. 

Connected graph has all pairs of vertices connected by at least one path.  

Connected component is the maximal connected sub-graph of a unconnected graph.  

Forest is a graph without cycles.  

Tree is a connected forest (previous type of trees are called rooted trees, these are free 

trees)  

Spanning tree is a spanning subgraph that is also a tree. 

More Properties 

If G is an undirected graph with n vertices and m edges: 

 If G is connected then m ≥ n - 1 

 If G is a tree then m = n - 1 

 If G is a forest then m ≤ n – 1 

Graph Traversal: 

1. Depth First Search 

2. Breadth First Search 



Lecture-20 

Depth First Search: 

Depth First Search (DFS) algorithm traverses a graph in a depthward motion and uses 

a stack to remember to get the next vertex to start a search, when a dead end occurs 

in any iteration. 

 
As in the example given above, DFS algorithm traverses from S to A to D to G to E to 

B first, then to F and lastly to C. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it 

in a stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will 

pop up all the vertices from the stack, which do not have adjacent vertices.) 

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1 

 

Initialize the stack. 



2 

 

Mark S as visited and put it 

onto the stack. Explore any 

unvisited adjacent node 

from S. We have three nodes 

and we can pick any of them. 

For this example, we shall 

take the node in an 

alphabetical order. 

3 

 

Mark A as visited and put it 

onto the stack. Explore any 

unvisited adjacent node from 

A. Both Sand D are adjacent 

to A but we are concerned for 

unvisited nodes only. 

4 

 

Visit D and mark it as visited 

and put onto the stack. Here, 

we have B and C nodes, 

which are adjacent to D and 

both are unvisited. However, 

we shall again choose in an 

alphabetical order. 

5 

 

We choose B, mark it as 

visited and put onto the stack. 

Here Bdoes not have any 

unvisited adjacent node. So, 

we pop Bfrom the stack. 



6 

 

We check the stack top for 

return to the previous node 

and check if it has any 

unvisited nodes. Here, we 

find D to be on the top of the 

stack. 

7 

 

Only unvisited adjacent node 

is from D is C now. So we 

visit C, mark it as visited and 

put it onto the stack. 

As C does not have any unvisited adjacent node so we keep popping the stack until we 

find a node that has an unvisited adjacent node. In this case, there's none and we keep 

popping until the stack is empty. 



Lecture-21 

Breadth First Search 

Breadth First Search (BFS) algorithm traverses a graph in a breadthward motion and 

uses a queue to remember to get the next vertex to start a search, when a dead end 

occurs in any iteration. 

 
As in the example given above, BFS algorithm traverses from A to B to E to F first then 

to C and G lastly to D. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it 

in a queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

Step Traversal Description 

1 

 

Initialize the queue. 



2 

 

We start from 

visiting S(starting node), and 

mark it as visited. 

3 

 

We then see an unvisited 

adjacent node from S. In this 

example, we have three nodes 

but alphabetically we 

choose A, mark it as visited 

and enqueue it. 

4 

 

Next, the unvisited adjacent 

node from S is B. We mark it 

as visited and enqueue it. 

5 

 

Next, the unvisited adjacent 

node from S is C. We mark it 

as visited and enqueue it. 



6 

 

Now, S is left with no unvisited 

adjacent nodes. So, we 

dequeue and find A. 

7 

 

From A we have D as 

unvisited adjacent node. We 

mark it as visited and enqueue 

it. 

At this stage, we are left with no unmarked (unvisited) nodes. But as per the algorithm 

we keep on dequeuing in order to get all unvisited nodes. When the queue gets 

emptied, the program is over. 



Lecture-22 

Graph representation 

You can represent a graph in many ways. The two most common ways of representing 

a graph is as follows: 

Adjacency matrix 

An adjacency matrix is a VxV binary matrix A. Element Ai,j is 1 if there is an edge from 

vertex i to vertex j else Ai,jis 0. 

Note: A binary matrix is a matrix in which the cells can have only one of two possible 

values - either a 0 or 1. 

The adjacency matrix can also be modified for the weighted graph in which instead of 

storing 0 or 1 in Ai,j, the weight or cost of the edge will be stored. 

In an undirected graph, if Ai,j = 1, then Aj,i = 1. In a directed graph, if Ai,j = 1, 

then Aj,i may or may not be 1. 

Adjacency matrix provides constant time access (O(1) ) to determine if there is an 

edge between two nodes. Space complexity of the adjacency matrix is O(V2). 

The adjacency matrix of the following graph is: 

i/j : 1 2 3 4 

1 : 0 1 0 1 

2 : 1 0 1 0 

3 : 0 1 0 1 

4 : 1 0 1 0 

 
The adjacency matrix of the following graph is: 

i/j: 1 2 3 4 

1 : 0 1 0 0 

2 : 0 0 0 1 

3 : 1 0 0 1 

4 : 0 1 0 0 



 
Adjacency list 

The other way to represent a graph is by using an adjacency list. An adjacency list is an 

array A of separate lists. Each element of the array Ai is a list, which contains all the 

vertices that are adjacent to vertex i. 

For a weighted graph, the weight or cost of the edge is stored along with the vertex in 

the list using pairs. In an undirected graph, if vertex j is in list Ai then vertex i will be in 

list Aj. 

The space complexity of adjacency list is O(V + E) because in an adjacency list 

information is stored only for those edges that actually exist in the graph. In a lot of 

cases, where a matrix is sparse using an adjacency matrix may not be very useful. This 

is because using an adjacency matrix will take up a lot of space where most of the 

elements will be 0, anyway. In such cases, using an adjacency list is better. 

Note: A sparse matrix is a matrix in which most of the elements are zero, whereas a 

dense matrix is a matrix in which most of the elements are non-zero. 

 
Consider the same undirected graph from an adjacency matrix. The adjacency list of the 

graph is as follows: 

A1 → 2 → 4 

 

A2 → 1 → 3 

 

A3 → 2 → 4 



 

A4 → 1 → 3 

 

 
Consider the same directed graph from an adjacency matrix. The adjacency list of the 

graph is as follows: 

A1 → 2 

 

A2 → 4 

 

A3 → 1 → 4 

 

A4 → 2 



Lecture-23 

Topological Sorting: 

Topological sorting for Directed Acyclic Graph (DAG) is a linear ordering of vertices 

such that for every directed edge uv, vertex u comes before v in the 

ordering. Topological Sorting for a graph is not possible if the graph is not a DAG. 

For example, a topological sorting of the following graph is “5 4 2 3 1 0”. There can be 

more than one topological sorting for a graph. For example, another topological sorting 

of the following graph is “4 5 2 3 1 0”. The first vertex in topological sorting is always a 

vertex with in-degree as 0 (a vertex with no in-coming edges). 

Algorithm to find Topological Sorting: 

In DFS, we start from a vertex, we first print it and then recursively call DFS for its 

adjacent vertices. In topological sorting, we use a temporary stack. We don’t print the 

vertex immediately, we first recursively call topological sorting for all its adjacent 

vertices, then push it to a stack. Finally, print contents of stack. Note that a vertex is 

pushed to stack only when all of its adjacent vertices (and their adjacent vertices and so 

on) are already in stack. 

Topological Sorting vs Depth First Traversal (DFS): 

In DFS, we print a vertex and then recursively call DFS for its adjacent vertices. In 

topological sorting, we need to print a vertex before its adjacent vertices. For example, 

in the given graph, the vertex ‘5’ should be printed before vertex ‘0’, but unlike DFS, the 

vertex  ‘4’ should also be printed before vertex ‘0’. So Topological sorting is different 

from DFS. For example, a DFS of the shown graph is “5 2 3 1 0 4”, but it is not a 

topological sorting  

Dynamic Programming  

The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem. The 

problem is to find shortest distances between every pair of vertices in a given edge 

weighted directed Graph. 

Example: 

Input: 

       graph[][] = { {0,   5,  INF, 10}, 

                    {INF,  0,  3,  INF}, 

                    {INF, INF, 0,   1}, 

                    {INF, INF, INF, 0} } 

which represents the following graph 

             10 

https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/
https://www.geeksforgeeks.org/depth-first-traversal-for-a-graph/


       (0)------->(3) 

        |         /|\ 

      5 |          | 

        |          | 1 

       \|/         | 

       (1)------->(2) 

            3        

Note that the value of graph[i][j] is 0 if i is equal to j  

And graph[i][j] is INF (infinite) if there is no edge from vertex i to j. 

 

Output: 

Shortest distance matrix 

      0      5      8      9 

    INF      0      3      4 

    INF    INF      0      1 

    INF    INF    INF      0  

Floyd Warshall Algorithm 

 

We initialize the solution matrix same as the input graph matrix as a first step. Then we 

update the solution matrix by considering all vertices as an intermediate vertex. The 

idea is to one by one pick all vertices and update all shortest paths which include the 

picked vertex as an intermediate vertex in the shortest path. When we pick vertex 

number k as an intermediate vertex, we already have considered vertices {0, 1, 2, .. k-1} 

as intermediate vertices. For every pair (i, j) of source and destination vertices 

respectively, there are two possible cases. 

1) k is not an intermediate vertex in shortest path from i to j. We keep the value of 

dist[i][j] as it is. 

2) k is an intermediate vertex in shortest path from i to j. We update the value of dist[i][j] 

as dist[i][k] + dist[k][j]. 

The following figure shows the above optimal substructure property in the all-pairs 

shortest path problem. 

 

https://cdncontribute.geeksforgeeks.org/wp-content/uploads/dpFloyd-Warshall-.jpg


Lecture-24 

Bubble Sort 

We take an unsorted array for our example. Bubble sort takes Ο(n2) time so we're 

keeping it short and precise. 

 
Bubble sort starts with very first two elements, comparing them to check which one is 

greater. 

 
In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we 

compare 33 with 27. 

 
We find that 27 is smaller than 33 and these two values must be swapped. 

 
The new array should look like this − 

 
Next we compare 33 and 35. We find that both are in already sorted positions. 

 
Then we move to the next two values, 35 and 10. 

 
We know then that 10 is smaller 35. Hence they are not sorted. 

 
We swap these values. We find that we have reached the end of the array. After one 

iteration, the array should look like this − 

 
To be precise, we are now showing how an array should look like after each iteration. 

After the second iteration, it should look like this − 



 
Notice that after each iteration, at least one value moves at the end. 

 
And when there's no swap required, bubble sorts learns that an array is completely 

sorted. 

 
Now we should look into some practical aspects of bubble sort. 

Algorithm 

We assume list is an array of n elements. We further assume that swapfunction 

swaps the values of the given array elements. 

begin BubbleSort(list) 

 

   for all elements of list 

      if list[i] > list[i+1] 

         swap(list[i], list[i+1]) 

      end if 

   end for 

    

   return list 

    

end BubbleSort 

Pseudocode 

We observe in algorithm that Bubble Sort compares each pair of array element unless 

the whole array is completely sorted in an ascending order. This may cause a few 

complexity issues like what if the array needs no more swapping as all the elements 

are already ascending. 

To ease-out the issue, we use one flag variable swapped which will help us see if any 

swap has happened or not. If no swap has occurred, i.e. the array requires no more 

processing to be sorted, it will come out of the loop. 

Pseudocode of BubbleSort algorithm can be written as follows − 

procedure bubbleSort( list : array of items ) 

 

   loop = list.count; 

    

   for i = 0 to loop-1 do: 

      swapped = false 



   

      for j = 0 to loop-1 do: 

       

         /* compare the adjacent elements */    

         if list[j] > list[j+1] then 

            /* swap them */ 

            swap( list[j], list[j+1] )    

            swapped = true 

         end if 

          

      end for 

       

      /*if no number was swapped that means  

      array is sorted now, break the loop.*/ 

       

      if(not swapped) then 

         break 

      end if 

       

   end for 

    

end procedure return list 



Lecture-25 

Insertion Sort  

We take an unsorted array for our example. 

 
Insertion sort compares the first two elements. 

 
It finds that both 14 and 33 are already in ascending order. For now, 14 is in sorted 

sub-list. 

 
Insertion sort moves ahead and compares 33 with 27. 

 
And finds that 33 is not in the correct position. 

 
It swaps 33 with 27. It also checks with all the elements of sorted sub-list. Here we see 

that the sorted sub-list has only one element 14, and 27 is greater than 14. Hence, the 

sorted sub-list remains sorted after swapping. 

 
By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 with 10. 

 
These values are not in a sorted order. 

 
So we swap them. 

 
However, swapping makes 27 and 10 unsorted. 

 



Hence, we swap them too. 

 
Again we find 14 and 10 in an unsorted order. 

 
We swap them again. By the end of third iteration, we have a sorted sub-list of 4 items. 

 
This process goes on until all the unsorted values are covered in a sorted sub-list. Now 

we shall see some programming aspects of insertion sort. 

Algorithm 

Now we have a bigger picture of how this sorting technique works, so we can derive 

simple steps by which we can achieve insertion sort. 

Step 1 − If it is the first element, it is already sorted. return 1; 

Step 2 − Pick next element 

Step 3 − Compare with all elements in the sorted sub-list 

Step 4 − Shift all the elements in the sorted sub-list that is greater than the  

         value to be sorted 

Step 5 − Insert the value 

Step 6 − Repeat until list is sorted 

Pseudocode 

procedure insertionSort( A : array of items ) 

   int holePosition 

   int valueToInsert 

   for i = 1 to length(A) inclusive do: 

      valueToInsert = A[i] 

      holePosition = i 

   

      while holePosition > 0 and A[holePosition-1] > valueToInsert do: 

         A[holePosition] = A[holePosition-1] 

         holePosition = holePosition -1 

      end while 

      A[holePosition] = valueToInsert 

       

   end for 

 end procedure 



Lecture-26 

Selection Sort 

Consider the following depicted array as an example. 

 
For the first position in the sorted list, the whole list is scanned sequentially. The first 

position where 14 is stored presently, we search the whole list and find that 10 is the 

lowest value. 

 
So we replace 14 with 10. After one iteration 10, which happens to be the minimum 

value in the list, appears in the first position of the sorted list. 

 
For the second position, where 33 is residing, we start scanning the rest of the list in a 

linear manner. 

 
We find that 14 is the second lowest value in the list and it should appear at the second 

place. We swap these values. 

 
After two iterations, two least values are positioned at the beginning in a sorted 

manner. 

 
The same process is applied to the rest of the items in the array. 

Following is a pictorial depiction of the entire sorting process − 



 
Now, let us learn some programming aspects of selection sort. 

Algorithm 

Step 1 − Set MIN to location 0 

Step 2 − Search the minimum element in the list 

Step 3 − Swap with value at location MIN 

Step 4 − Increment MIN to point to next element 

Step 5 − Repeat until list is sorted 



Pseudocode 

procedure selection sort  

   list  : array of items 

   n     : size of list 

 

   for i = 1 to n - 1 

   /* set current element as minimum*/ 

      min = i     

   

      /* check the element to be minimum */ 

 

      for j = i+1 to n  

         if list[j] < list[min] then 

            min = j; 

         end if 

      end for 

 

      /* swap the minimum element with the current element*/ 

      if indexMin != i  then 

         swap list[min] and list[i] 

      end if 

   end for 

  

end procedure 



Lecture-27 

Merge Sort  

To understand merge sort, we take an unsorted array as the following − 

 
We know that merge sort first divides the whole array iteratively into equal halves 

unless the atomic values are achieved. We see here that an array of 8 items is divided 

into two arrays of size 4. 

 
This does not change the sequence of appearance of items in the original. Now we 

divide these two arrays into halves. 

 
We further divide these arrays and we achieve atomic value which can no more be 

divided. 

 
Now, we combine them in exactly the same manner as they were broken down. Please 

note the color codes given to these lists. 

We first compare the element for each list and then combine them into another list in a 

sorted manner. We see that 14 and 33 are in sorted positions. We compare 27 and 10 

and in the target list of 2 values we put 10 first, followed by 27. We change the order of 

19 and 35 whereas 42 and 44 are placed sequentially. 

 
In the next iteration of the combining phase, we compare lists of two data values, and 

merge them into a list of found data values placing all in a sorted order. 

 
After the final merging, the list should look like this − 

 
Now we should learn some programming aspects of merge sorting. 

Algorithm 



Merge sort keeps on dividing the list into equal halves until it can no more be divided. 

By definition, if it is only one element in the list, it is sorted. Then, merge sort combines 

the smaller sorted lists keeping the new list sorted too. 

Step 1 − if it is only one element in the list it is already sorted, return. 

Step 2 − divide the list recursively into two halves until it can no more be divided. 

Step 3 − merge the smaller lists into new list in sorted order. 

Merge sort works with recursion and we shall see our implementation in the same way. 

procedure mergesort( var a as array ) 

   if ( n == 1 ) return a 

   var l1 as array = a[0] ... a[n/2] 

   var l2 as array = a[n/2+1] ... a[n] 

   l1 = mergesort( l1 ) 

   l2 = mergesort( l2 ) 

   return merge( l1, l2 ) 

end procedure 

procedure merge( var a as array, var b as array ) 

   var c as array 

   while ( a and b have elements ) 

      if ( a[0] > b[0] ) 

         add b[0] to the end of c 

         remove b[0] from b 

      else 

         add a[0] to the end of c 

         remove a[0] from a 

      end if 

   end while 

    

   while ( a has elements ) 

      add a[0] to the end of c 

      remove a[0] from a 

   end while 

    

   while ( b has elements ) 

      add b[0] to the end of c 

      remove b[0] from b 

   end while 

   return c 

end procedure 



Lecture-28 

Quick sort 

Quick sort is a highly efficient sorting algorithm and is based on partitioning of array of 

data into smaller arrays. A large array is partitioned into two arrays one of which holds 

values smaller than the specified value, say pivot, based on which the partition is made 

and another array holds values greater than the pivot value. 

Quick sort partitions an array and then calls itself recursively twice to sort the two 

resulting subarrays. This algorithm is quite efficient for large-sized data sets as its 

average and worst case complexity are of Ο(n2), where n is the number of items. 

Partition in Quick Sort 

Following animated representation explains how to find the pivot value in an array. 

 
The pivot value divides the list into two parts. And recursively, we find the pivot for 

each sub-lists until all lists contains only one element. 

Quick Sort Pivot Algorithm 

Based on our understanding of partitioning in quick sort, we will now try to write an 

algorithm for it, which is as follows. 

Step 1 − Choose the highest index value has pivot 

Step 2 − Take two variables to point left and right of the list excluding pivot 

Step 3 − left points to the low index 

Step 4 − right points to the high 

Step 5 − while value at left is less than pivot move right 

Step 6 − while value at right is greater than pivot move left 

Step 7 − if both step 5 and step 6 does not match swap left and right 

Step 8 − if left ≥ right, the point where they met is new pivot 

Quick Sort Pivot Pseudocode 

The pseudocode for the above algorithm can be derived as − 

function partitionFunc(left, right, pivot) 

   leftPointer = left 

   rightPointer = right - 1 

 

   while True do 

      while A[++leftPointer] < pivot do 



         //do-nothing             

      end while 

   

      while rightPointer > 0 && A[--rightPointer] > pivot do 

         //do-nothing          

      end while 

   

      if leftPointer >= rightPointer 

         break 

      else                 

         swap leftPointer,rightPointer 

      end if 

   

   end while  

  

   swap leftPointer,right 

   return leftPointer 

  

end function 

Quick Sort Algorithm 

Using pivot algorithm recursively, we end up with smaller possible partitions. Each 

partition is then processed for quick sort. We define recursive algorithm for quicksort as 

follows − 

Step 1 − Make the right-most index value pivot 

Step 2 − partition the array using pivot value 

Step 3 − quicksort left partition recursively 

Step 4 − quicksort right partition recursively 

Quick Sort Pseudocode 

To get more into it, let see the pseudocode for quick sort algorithm − 

procedure quickSort(left, right) 

 

   if right-left <= 0 

      return 

   else      

      pivot = A[right] 

      partition = partitionFunc(left, right, pivot) 

      quickSort(left,partition-1) 

      quickSort(partition+1,right)     

   end if   

   end procedure 



Lecture-29 

Heap Sort 

Heap sort is a comparison based sorting technique based on Binary Heap data 

structure. It is similar to selection sort where we first find the maximum element and 

place the maximum element at the end. We repeat the same process for remaining 

element. 

What is Binary Heap? 

 

Let us first define a Complete Binary Tree. A complete binary tree is a binary tree in 

which every level, except possibly the last, is completely filled, and all nodes are as far 

left as possible  

A Binary Heap is a Complete Binary Tree where items are stored in a special order 

such that value in a parent node is greater(or smaller) than the values in its two children 

nodes. The former is called as max heap and the latter is called min heap. The heap 

can be represented by binary tree or array. 

Why array based representation for Binary Heap? 

 

Since a Binary Heap is a Complete Binary Tree, it can be easily represented as array 

and array based representation is space efficient. If the parent node is stored at index I, 

the left child can be calculated by 2 * I + 1 and right child by 2 * I + 2 (assuming the 

indexing starts at 0). 

Heap Sort Algorithm for sorting in increasing order: 

 

1. Build a max heap from the input data. 

2. At this point, the largest item is stored at the root of the heap. Replace it with the last 

item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of 

tree. 

3. Repeat above steps while size of heap is greater than 1. 

How to build the heap? 

 

Heapify procedure can be applied to a node only if its children nodes are heapified. So 

the heapification must be performed in the bottom up order. 

Lets understand with the help of an example: 

Input data: 4, 10, 3, 5, 1 

                 4(0) 

        /   \ 

         10(1)   3(2) 

            /   \ 

     5(3)    1(4) 

 

The numbers in bracket represent the indices in the array  

representation of data. 

http://geeksquiz.com/binary-heap/
http://geeksquiz.com/binary-heap/


 

Applying heapify procedure to index 1: 

         4(0) 

        /   \ 

            10(1)    3(2) 

           /   \ 

    5(3)    1(4) 

 

Applying heapify procedure to index 0: 

            10(0) 

        /  \ 

         5(1)  3(2) 

            /   \ 

         4(3)    1(4) 

The heapify procedure calls itself recursively to build heap 

 in top down manner. 

Radix Sort 

The lower bound for Comparison based sorting algorithm (Merge Sort, Heap Sort, 

Quick-Sort .. etc) is Ω(nLogn), i.e., they cannot do better than nLogn. 

Counting sort is a linear time sorting algorithm that sort in O(n+k) time when elements 

are in range from 1 to k. 

What if the elements are in range from 1 to n2?  

 

We can’t use counting sort because counting sort will take O(n2) which is worse than 

comparison based sorting algorithms. Can we sort such an array in linear time? 

Radix Sort is the answer. The idea of Radix Sort is to do digit by digit sort starting from 

least significant digit to most significant digit. Radix sort uses counting sort as a 

subroutine to sort. 

https://www.geeksforgeeks.org/lower-bound-on-comparison-based-sorting-algorithms/
https://www.geeksforgeeks.org/counting-sort/
http://en.wikipedia.org/wiki/Radix_sort


Lecture-30 

Radix Sort  

 

1) Do following for each digit i where i varies from least significant digit to the most 

significant digit. 

………….a) Sort input array using counting sort (or any stable sort) according to the i’th 

digit. 

Example: 

Original, unsorted list: 

170, 45, 75, 90, 802, 24, 2, 66 

Sorting by least significant digit (1s place) gives: [*Notice that we keep 802 before 2, 

because 802 occurred before 2 in the original list, and similarly for pairs 170 & 90 and 

45 & 75.] 

170, 90, 802, 2, 24, 45, 75, 66 

Sorting by next digit (10s place) gives: [*Notice that 802 again comes before 2 as 802 

comes before 2 in the previous list.] 

802, 2, 24, 45, 66, 170, 75, 90 

Sorting by most significant digit (100s place) gives: 

2, 24, 45, 66, 75, 90, 170, 802 

What is the running time of Radix Sort? 

Let there be d digits in input integers. Radix Sort takes O(d*(n+b)) time where b is the 

base for representing numbers, for example, for decimal system, b is 10. What is the 

value of d? If k is the maximum possible value, then d would be O(logb(k)). So overall 

time complexity is O((n+b) * logb(k)). Which looks more than the time complexity of 

comparison based sorting algorithms for a large k. Let us first limit k. Let k <= nc where 

c is a constant. In that case, the complexity becomes O(nLogb(n)). But it still doesn’t 

beat comparison based sorting algorithms. 

Linear Search 

Linear search is to check each element one by one in sequence. The following 

method linearSearch() searches a target in an array and returns the index of the target; if 

not found, it returns -1, which indicates an invalid index. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

int linearSearch(int arr[], int target) 

{ 

    for (int i = 0; i < arr.length; i++) 

    { 

        if (arr[i] == target) 

            return i; 

    } 

    return -1; 

} 



Linear search loops through each element in the array; each loop body takes constant 

time. Therefore, it runs in linear time O(n). 

Lecture-31 

Binary Search 

For sorted arrays, binary search is more efficient than linear search. The process starts 

from the middle of the input array: 

 If the target equals the element in the middle, return its index. 

 If the target is larger than the element in the middle, search the right half. 

 If the target is smaller, search the left half. 

In the following binarySearch() method, the two index variables first and last indicates the 

searching boundary at each round. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

int binarySearch(int arr[], int target) 

{ 

    int first = 0, last = arr.length - 1; 

  

    while (first <= last) 

    { 

        int mid = (first + last) / 2;  

        if (target == arr[mid])  

            return mid;  

        if (target > arr[mid]) 

            first = mid + 1; 

        else 

            last = mid - 1; 

    } 

    return -1; 

} 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

arr: {3, 9, 10, 27, 38, 43, 82} 

  

target: 10 

first: 0, last: 6, mid: 3, arr[mid]: 27   --  go left 

first: 0, last: 2, mid: 1, arr[mid]: 9    --  go right 

first: 2, last: 2, mid: 2, arr[mid]: 10   --  found 

  

target: 40 

first: 0, last: 6, mid: 3, arr[mid]: 27   --  go right 

first: 4, last: 6, mid: 5, arr[mid]: 43   --  go left 

first: 4, last: 4, mid: 4, arr[mid]: 38   --  go right 

first: 5, last: 4                         --  not found 



Binary search divides the array in the middle at each round of the loop. Suppose the 

array has length n and the loop runs in t rounds, then we have n * (1/2)^t = 1 since at 

each round the array length is divided by 2. Thus t = log(n). At each round, the loop 

body takes constant time. Therefore, binary search runs in logarithmic time O(log n). 

The following code implements binary search using recursion. To call the method, we 

need provide with the boundary indexes, for example, 

binarySearch(arr, 0, arr.length - 1, target); 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

 

binarySearch(int arr[], int first, int last, int target) 

{ 

    if (first > last) 

        return -1; 

  

    int mid = (first + last) / 2; 

  

    if (target == arr[mid])  

        return mid; 

    if (target > arr[mid]) 

        return binarySearch(arr, mid + 1, last, target); 

    // target < arr[mid] 

    return binarySearch(arr, first, mid - 1, target); 

} 

 



Lecture-32 

Hashing 

Introduction 

The problem at hands is to speed up 

searching. Consider the problem of 

searching an array for a given value. If 

the array is not sorted, the search might 

require examining each and all 

elements of the array. If the array is 

sorted, we can use the binary search, 

and therefore reduce the worse-case 

runtime complexity to O(log n). We 

could search even faster if we know in 

advance the index at which that value is 

located in the array. Suppose we do 

have that magic function that would tell 

us the index for a given value. With this 

magic function our search is reduced to 

just one probe, giving us a constant 

runtime O(1). Such a function is called 

a hash function . A hash function is a 

function which when given a key, 

generates an address in the table. 

    

The example of a hash function is a book call number. Each book in the library has 

a unique call number. A call number is like an address: it tells us where the book is 

located in the library. Many academic libraries in the United States, uses Library of 

Congress Classification for call numbers. This system uses a combination of letters and 

numbers to arrange materials by subjects. 

A hash function that returns a unique hash number is called a universal hash function. 

In practice it is extremely hard to assign unique numbers to objects. The later is always 

possible only if you know (or approximate) the number of objects to be proccessed. 

Thus, we say that our hash function has the following properties 

 it always returns a number for an object. 

 two equal objects will always have the same number 

 two unequal objects not always have different numbers 

The precedure of storing objets using a hash function is the following. 

Create an array of size M. Choose a hash function h, that is a mapping from 

objects into integers 0, 1, ..., M-1. Put these objects into an array at indexes 

computed via the hash function index = h(object). Such array is called a hash 

table. 



 

Collisions 

When we put objects into a hashtable, it is possible that different objects (by 

the equals() method) might have the same hashcode. This is called a collision. Here is 

the example of collision. Two different strings ""Aa" and "BB" have the same key: . 

"Aa" = 'A' * 31 + 'a' = 2112 

"BB" = 'B' * 31 + 'B' = 2112 

    

How to resolve collisions? Where do we put 

the second and subsequent values that hash 

to this same location? There are several 

approaches in dealing with collisions. One of 

them is based on idea of putting the keys that 

collide in a linked list! A hash table then is an 

array of lists!! This technique is called 

a separate chaining collision resolution. 

The big attraction of using a hash table is a constant-time performance for the basic 

operations add, remove, contains, size. Though, because of collisions, we cannot guarantee 

the constant runtime in the worst-case. Why? Imagine that all our objects collide into the 

same index. Then searching for one of them will be equivalent to searching in a list, that 

takes a liner runtime. However, we can guarantee an expected constant runtime, if we 

make sure that our lists won't become too long. This is usually implemnted by 

maintaining a load factor that keeps a track of the average length of lists. If a load factor 

approaches a set in advanced threshold, we create a bigger array and rehash all 

elements from the old table into the new one. 

Another technique of collision resolution is a linear probing. If we cannoit insert at index 

k, we try the next slot k+1. If that one is occupied, we go to k+2, and so on.  



 

Lecture-33 

Hashing Functions 

Choosing a good hashing function, h(k), is essential for hash-table based 

searching. h should distribute the elements of our collection as uniformly as possible to 

the "slots" of the hash table. The key criterion is that there should be a minimum 

number of collisions. 

If the probability that a key, k, occurs in our collection is P(k), then if there are m slots in 

our hash table, a uniform hashing function, h(k), would ensure: 

 
Sometimes, this is easy to ensure. For example, if the keys are randomly distributed in 

(0,r], then, 

h(k) = floor((mk)/r) 

will provide uniform hashing. 

Mapping keys to natural numbers 

Most hashing functions will first map the keys to some set of natural numbers, say (0,r]. 

There are many ways to do this, for example if the key is a string of ASCII characters, 

we can simply add the ASCII representations of the characters mod 255 to produce a 

number in (0,255) - or we could xor them, or we could add them in pairs mod 216-1, or 

... 

Having mapped the keys to a set of natural numbers, we then have a number of 

possibilities. 

1. Use a mod function: 

h(k) = k mod m. 

When using this method, we usually avoid certain values of m. Powers of 2 are 

usually avoided, for k mod 2b simply selects the b low order bits of k. Unless we 

know that all the 2b possible values of the lower order bits are equally likely, this 

will not be a good choice, because some bits of the key are not used in the hash 

function. 

Prime numbers which are close to powers of 2 seem to be generally good 

choices for m. 

For example, if we have 4000 elements, and we have chosen an overflow table 

organization, but wish to have the probability of collisions quite low, then we 

might choose m = 4093. (4093 is the largest prime less than 4096 = 212.) 

2. Use the multiplication method: 

o Multiply the key by a constant A, 0 < A < 1, 

o Extract the fractional part of the product, 

o Multiply this value by m. 

Thus the hash function is: 

h(k) = floor(m * (kA - floor(kA))) 



In this case, the value of m is not critical and we typically choose a power of 2 so 

that we can get the following efficient procedure on most digital computers: 

o Choose m = 2p. 

o Multiply the w bits of k by floor(A * 2w) to obtain a 2w bit product. 

o Extract the p most significant bits of the lower half of this product. 

It seems that: 

A = (sqrt(5)-1)/2 = 0.6180339887 

is a good choice (see Knuth, "Sorting and Searching", v. 3 of "The Art of 

Computer Programming"). 

3. Use universal hashing: 

A malicious adversary can always chose the keys so that they all hash to the 

same slot, leading to an average O(n) retrieval time. Universal hashing seeks to 

avoid this by choosing the hashing function randomly from a collection of hash 

functions (cf Cormen et al, p 229- ). This makes the probability that the hash 

function will generate poor behaviour small and produces good average 

performance. 

 

 


	Adding two polynomials using Linked List
	Compaction
	Lecture-12
	Infix to Postfix Conversion
	OUTPUT:
	Binary Tree Terminology
	Other Tree Terms
	Lecture-14
	Special Forms of Binary Trees
	Representing Binary Trees in Memory

	In-order Traversal
	Algorithm

	Pre-order Traversal
	Algorithm

	Post-order Traversal
	Algorithm
	Definition of an AVL tree
	Insertion


	2. Insertion algorithm
	3. Deletion algorithm
	Trees are used in many other ways in the computer science. Compilers and database are two major examples in this regard. In case of compilers, when the languages are translated into machine language, tree-like structures are used. We have also seen an...


	Representation
	Basic Operations
	Node
	Search Operation
	Algorithm

	Insert Operation
	Algorithm


	Lecture-19
	Graphs Terminology
	Properties
	More Terminology
	More Properties

	Lecture-23
	Topological Sorting:
	Dynamic Programming
	Lecture-24
	Bubble Sort
	Algorithm
	Pseudocode
	Lecture-25
	Insertion Sort
	Algorithm

	Pseudocode (1)
	Lecture-26
	Selection Sort
	Algorithm
	Pseudocode

	Lecture-27
	Merge Sort
	Algorithm

	Partition in Quick Sort
	Quick Sort Pivot Algorithm
	Quick Sort Pivot Pseudocode
	Quick Sort Algorithm
	Quick Sort Pseudocode

	Lecture-29
	Heap Sort
	Radix Sort
	Linear Search
	Lecture-31
	Binary Search

	Lecture-32
	Hashing
	Introduction
	Collisions
	Mapping keys to natural numbers



