

Chaudhary Mahadeo Prasad Degree College (AConstituent Postgraduate College of Central University of Allahabad

Dr Sarita Srivastava Assistant Professor Botany Department e-learning module Ecology & phytogeography M.Sc.Botany Course code 507

What is population? Population is a group of organisms of same species/ one species occupying an area and are able to exchange genetic information.

Population Ecology **Metapopulation** concept given by Husband and Barrett 1996 •Metapopulation is a network of populations with occasional movement between them olt is advantageous because if a species exists **CIS** C metapopulation it be can colonized and reestablished even if it is extinct in a particular area

- Populations are always changing therefore they are dynamic
- Seasonal fluctuations in the population is very important aspect of population study

Population dynamics

• Population is stable. Equilibrium state

 when gains due to birth and immigrations are equal to the losses due to Deaths and emigrations.

Population Ecology

• i.e. B+I=D+E;

• Population will increase

- when gains are greater than losses
 i.e. B+I > D+E
- Population will decrease when
- Losses are greater than gains

oi.e. B+I< D+E

- Organisms inhabiting an area at a given time constitutes a Population.
- When all the organisms belong to same species it is single species population.
- If the species belong to different groups then it is mixed population

- Population is studied under following headings
 - Density
 - o Natality
 - o Mortality
- o Lifetables
- Fecundity schedules

2. Distribution of a population

There are 3 types of distribution patterns in populations
Uniform/regular distribution
Random
Clustered or aggregated

Common Dispersion Patterns

Clumped (elephants) Uniform (creosote bush)

Random (dandelions)

Clumped is most common because resources have a patchy distribution.

UNIFORM DISTRIBUTION

• The distance between individuals is uniform over a large area

- This is common in artificial ecosystem.
- This is not possible in case of animals
- Among plants is holds true for the Tree which provide shade
- In case of smaller plants it is true where they secrete chemicals which diffuse.
- Distribution is uniform when the Mean is greater than variance

Random distribution

- In this the distance between the organisms is random.
- This type of distribution is most common in plants and animals.
- There is equal probability of occupying any plant in area or
- When the presence of one organism doesn't affect the presence of other organism
- Here the Mean~Variance

Clustered Distribution

- There is higher density of individuals at a particular area and in other area it is absent or minimum.
- olt is more common in animals than plants
- This is so because the individuals may be attracted to a particular point or
- Presence of one individual may attract other individual
- Here variance is greater than mean
- Territorial behavior is seen in case of Clustered distribution.

Methods of sampling a population The Lincoln index is a common mark recapture method to estimate the total population density in a defined area This methods captures and marks some fraction of total population and use this fraction to estimate the total population density

Minimum known alive is a mark recapture method to estimate population density over an extended period of time Lincoln index Population estimate x No of individuals No of individuals No of marked

captured in sample S1 at time t1 No of marked individuals found in sample S2 at time t2

•Total count method: count each and every individual

- •Marker of Transmitter: marks or signals are received due to movement of population
- •Plotless method: without making plots we count the population
- •Removal method: we remove some plants from the samples
- Quadrat Method: we take samples of the population by quadrants and we draw inference about pupulation

Important % value for a species = A+B+C

• Relative density A =

density of a species x 100

total density for all the species

• Relative dominance B=

basal area for a species x 100

total basal area for all the species

• Relative Frequency C=

freq. of occurrence of a species in a plot x 100

total frequency for all the species

• Important % value for a species gives a better index of importance or function of a species in its habitat. A table of importance of each tree species gives the rank of a particular tree species in a forest community

Growth of a population • Regulated by two factors •Natality: ability to reproduce at a given time •Mortality: inherent capacity for death or physiological longevity o1928: ROYAL CHAPMAN referred these forces a biotic potential & environmental resistance

Natality

- olt is the ability of a population to increase by reproduction
- •Equivalent to BIRTH RATE of human population
- •Definition: Natality is a broader term covering production of new organisms whether such organisms are born, hatched, germinate or arise by division.

Types of Natality

• ABSOLUTE OR CRUDE BIRTH RATE:

- Crude birth rate(B)= $\Delta N_n / \Delta t$
- N_n= number of individuals produced in time Δ t;
- Where Δ = change (N₀-N_t), N₀₌ initial population; N_{t=} no of individuals at time t

•Specific birth rate (b)=

- specific Natality= $\Delta N_n / N_0 \Delta t$
- Where N_0 =initial population
- Dividing the number of new individuals produced per unit time by a unit of population

Types of Natality

- Maximum natality:
 - also called absolute or physiological natality
- if everything is ideal then the maximum no of individuals added to a population .
- o It is constant for a given population

- Population Ecology
 Ecological or realized natality: Population increase
 - under the given set of environmental conditions
- It is not constant for a population

*PN is always greater than EN *If PN-En is minimum then conditions are favourable for the growth of a population

Mortaltiy Death Rate

- It is the death of the individuals in a population.
- Mortality is equivalent to demographic death rate
- Definition: Number of individuals dying in a given period of time
- CRUDE Mortality DEATH RATE (M)= $\Delta D / \Delta t$
- SPECIFIC MORTALITY (m)= m= $\Delta D/ N \Delta t$
- N= size of the population
- Death rate is studied to see the survival rate
- o Survival rate= 1-M
- Survivorship curves show how individuals are surviving in a given population

Population Ecology Two types of Mortality

• Physiological mortality (PM)

- It is also termed as theoretical or minimum mortality
- It is constant for a population
 Represents the minimum loss under ideal conditions or non-limiting conditions
 - When conditions are favorable Individuals die on their own or physiological disturbances i.e old age

- Ecological Mortality (EM)
- o also called realized mortality
- Loss of individuals under a given environmental conditions
- It is not a constant but varies with the population and environmental conditions
- This is always maximum

- It is always minimum
 - 1. EM = PM means conditions are favorable or less harsh or each individual is living its physiological age
 - 2. EM-PM is less means favorable conditions
 - 3. EM-PM is high means the conditions are not favorable for survival of individuals

Life expectancy is the life span

- Life expectancy is the average time for which they can live
- Net reproductive rate: number of offspring produced per individual
- Survivorship patterns: patterns of survival.
- Life expectancy can be calculated by life tables
- Vital index= is ratio of birth and death for a population (birth/death x 100)
- o It is the survivorship that is important index therefore survivorship curves are significant

Population Ecology Life table

Introduced by Raymond Pearl

- Life table is systematic representation of mortality in a population
- •Life table gives a complete picture of mortality in a population.
- olt is a statistical representation of mortality.
- olt represents the number of survivors and death in a particular age class

How to construct a life table

- Life table is a statistical representation of some variables in a systematic form
- to predict the pattern of mortality in a population
- Variables:
- x=age class/ age intervals
- Ix= no of survivors at the beginning of an age class
- dx = no of organisms dying in an age class during an age interval x and x+1
- x=age class & x+1=next age class
- qx= death rate or age specific death = dx/l_x
- Lx= theoretical value, average time lived by organism of an class Lx= (l_x)-(dx/2)
- T_x= theoretical value. Total time lived by individual of an age class. T_x= summation of L_x values from bottom to top
- $\mathbf{T}_{x1} = \mathbf{T}_{x1} \mathbf{L}_{x1} = \mathbf{I}_{x5} + \mathbf{I}_{x4} + \mathbf{I}_{x3} + \mathbf{L}_{x2}$
- ex=life expectancy= T_x/I_x

Life table of a grass species

X age class	lx	dx (x- x+1)	qx= (dx/lx)	Lx= (l _x) ₋ (dx/2)	Тх	ex= T _x /I _x x age interval
00-30	1000	92	0.092	954	3248	3248/1000 x 30 =97.44
30-60	908	100	100/908	858	2294	75.78
60-90	808	120	120/808	748	1436	53.31
90-120	688	400	400/688	488	688	30.00
120-150	288	232	232/288	172	200	20.82
150-180	56	56	56/56	28	28	15.00

On the basis of mortality rate the plants are classified as

- Annuals: only one reproductive event eg. Grass, insect.
- Annuals have discrete generations
- where one generation is clear-cut different from other **no overlapping of generations**
- **Perennials**: where there is more than one reproductive event in the life.
- The off springs as well as parents can survive at the same time, i.e. continuous generations
- Overlapping of generations is seen
- Cohort: in annuals we see cohorts a group of individuals of same species of same age group at a place.

Types of life tables: two types

•Horizontal/dynamic or cohort type: it is applicable to the individuals which have no overlapping in their generation.

oVertical/ static/ time specific: in case of long lived populations. Here the values of lx and dx is calculated from the age structure of the population at a single sampling rate

Fecundity schedules:

•These are made on the basis of patterns of birth among the individuals of different age class.

olt is done to find out the net reproductive rate R₀

Population Ecology

In animals following variables are used

ox= age class

- ol_x= age specific survival rate or portion of the original cohort surviving at the beginning of the age class
- om_x= age specific birth rate- number of of of of of of of offspring's produced per individuals or
- Number of female individual produced per female individuals of and age class
- onet reproductive rate $R_0 = \sum Ix.mx$

In plants following variables are used

- X= age class
- Bx seed = seed production by plants in unit time
- Nx= number of individuals in the beginning of an age class

- bx^{seed} = average no of seed produced per individuals belonging to an average age class
- o Bx^{seed}=Bx ^{seed}/Nx
- o Lx= survival rate
- Ix.bx= product of survival rate and seed produced per female individual
- \sum Ix.bx= Net reproductive rate R_0
- Net reproductive rate- R₀ is the average number of seeds produced by an individual in its life time

Survivorship curves

• Showing the pattern of survival

- These curves were given by Pearson in 1929 and Deevy 1947.
- otherefore also called as Deevy's curve
- These curves are plotted with log number of survivors against their age
- o Survivorship curves are affected by
 - o life history of survivors and
 - by the environmental conditions

Survivorship curve

Population Age distributions

Age distribution is an important attribute of population.

- It influences both natality and mortality
- The ratio of various age groups in a population represents the **current reproductive status** of the population
- and also predicts the **future rate of growth** Ratio of Pre Reproductive: Reproductive: Post Reproductive

Types of Age distribution

•There are three types of Age distribution:

Stable population Rapidly growing population Stabilized or declined population

A. Stable population B. Rapidly growing C. Stabilized / declined population

- 1. Here specific birth rates are equal to specific death rates
- 2. Where the ratio of each age class is same
- Here every young individual is able to live upto the post reproductive age
- 4. Ratio is 1:1:1
- 5. age pyramid is bell shaped
- Here r=0 and net reproductive rate is =1

- When age specific birth rate is higher than the age specific death rates
- 2. When the maximum population belongs to the pre reproductive age
- 3. And minimum % of population belongs to post reproductive age
- 4. Ratio is 3:2:1 pre reproductive: reproductive: post reproductive
- 5. Age structure is pyramid shaped

- 1. The age specific birth rates are less than the specific death rates
- 2. Maximum % of population belongs to the post reproductive age class
- 3. Here the competation for the resources is minimum and therefore the life span is extended
- 4. Ratio is 1:2:3
- 5. Urn shaped age structure

Biotic potential: Chapman 1928

- Intrinsic rate of population growth or inherent capacity of the population to grow. Under unlimited conditions the specific growth rate
- rN=dN/dT
- where r= average rate of increase per unit time per individual when competition is absent.
- dN=instantaneous change in size of the population with respect to the instantaneous change in time i.e. dt
- r= b-d i.e. r= the difference between the instantaneous birthrate and death rate
- o under unlimited environment ; r=r_{max}
- R_{max} is the BIOTIC POTENTIAL or maximum potential of the population under natural conditions.
- r_{max} r=0
- Unlimited competition Competition=0

most limiting condt competition maximum=1

Carrying capacity (K)

- It is the maximum capacity of an ecosystem to support a maximum size of population within it.
- Relation between the size of population N & K is :
 - oN<K means no or minimum competition b>d &r>1
 - N=K high competition b=d & r~1
 - N>K intense competition b<d & r<1
- This shows that as the population increases 'r' starts decreasing

- Carrying capacity is two types
- Maximum carrying capacity
- Optimum carrying capacity

K_m or maximum carrying is the maximum density that the resource in a particular area can support

> Point of inflection is the point showing maximum rate of increase

Optimum carrying capacity: Ko is a lower level density that can be sustained in a particular habitat without living on the edge regarding resources such as food or space(a quality over quantity parameter)

Carrying capacity (K)

maximum capacity of an ecosystem to support a maximum size of population within it

whenever the size of the population is minimum the amount of competition is minimum so the population can exercise maximum growth i.e. $r = r_{max}$

Population growth forms

Each population shows characteristic increase patterns these are population growth forms
 J-shaped growth forms
 S-shaped growth forms

Population Ecology

- Population under unlimited environmental conditions r=dN/Ndt
- Growth Curve is J shaped
- It is density triggerred curve
- Organisms following this type of curves are known as rstrategists
- These are ruderal species and r soon perish
- They are pioneering species and are opportunist
- This type of curve is seen when there is minute competition
- and if the competition increases then their number also

Population Ecology Population in limited condition

- in limited environment
- o (K-N/K)r=dN/NdT
- S shaped growth curve
- Also called density conditioned growth curve
- Means the growth rate is being brought down as the density increases
- Also called as logistic growth curve
- The organisms under this conditions are called K-stratigists and there is competition between them
- These are also called persistent species
- These maintain their population below the carrying capacity
- o These are the climax species

Nt

r & K strategists

Whenever a species is growing in an ecosystem it can select 2 types of growth curves.

- **Ruderal species**: *'r'-selection*, following shaped growth curve and called **r-startegists**
- Persistent species: 'K' selection, following shaped growth curve.
- r- strategists may change into k-strategists but vice-versa is not possible

r-strategists

•These are defined as organisms adapted for colonization and reproduction in expanding population with means of wide dispersal.

- •These are considered as exploiters, opportunists
- Adapted to grow in absence of competition
- •These ruderal species are the early colonizers or pioneering species

K-strategists

 These are organisms adapted for persistence and reproduction in stable population

- They lack means of wide dispersal
- They are competitive species
- They are late colonizers
- During the course of succession the ruderal species are followed by the persistent ones
- R-strategists may change into k-strategists but not vice versa

By Stern & Tigerstedt in 1974

parameters	r-strategists	k-strategists
Habitat	Variable/unpredictable environment , uncertainty	Fairly constant & predictable or more certain
Mortality	catastrophic (high rate), uncertain, random, density independent	More selective and certain, density dependent
Population size	Variable with time	Fairly constant with time
Density	No equilibrium, normally far below the carrying capacity of the environment	In equilibrium with the habitat and is near the carrying capacity i.e K-line
Size	Population size is governed by annual colonization. Colonize the fresh area	No recolonization

parameters	r-strategists	k-strategists		
Intra and interspecific competition	variable, Lax (subdueded)	Vigorous		
Selection favors	 Rapid development of organisms High value of rmax Early reproduction Small body weight One time reproduction and after that they die 	 Slow development Low value of r max Delayed reproduction Greater body weight Many reproductive events in life cycle 		
Life span	Short life span, usually less than one year	Long life span >1year		
Example	Microbes, annuals, insects	Perennial plants, mammals		